
Form Tools
Developer's Guide

Jan Bulánek
Zbyněk Falt
Lukáš Ježek

Jaroslav Keznikl

Form Tools: Developer's Guide
by Jan Bulánek, Zbyněk Falt, Lukáš Ježek, and Jaroslav Keznikl

iii

Table of Contents
1. Overview ... 1

1.1. Application overview .. 1
1.2. Modules .. 1
1.3. Coding style .. 2

2. Lib module ... 3
2.1. Overall architecture ... 3
2.2. Form document ... 3

2.2.1. Form item .. 4
2.2.2. Form property container .. 5
2.2.3. Form document .. 5
2.2.4. Form control ... 6
2.2.5. Form control group ... 6
2.2.6. Form control container .. 6
2.2.7. Form page ... 6
2.2.8. Form area .. 7
2.2.9. Input control ... 7
2.2.10. Input control container ... 8
2.2.11. Saving and loading the document .. 8

2.3. Program manipulation .. 9
2.3.1. Program generation .. 10
2.3.2. Program evaluation ... 11
2.3.3. Program manipulation ... 13

2.4. Printing ... 14
2.4.1. Form printer .. 14
2.4.2. Area printer .. 14
2.4.3. Area printer item ... 14
2.4.4. Text printer ... 14

2.5. Exporting the document ... 15
2.5.1. HTML export .. 15
2.5.2. PHP export ... 15
2.5.3. Export for Filler ... 15

2.6. Image acquisition ... 15
2.6.1. Image sources .. 16

3. Script module ... 17
4. OCR module .. 18

4.1. Overall architecture .. 18
4.2. Image denoising ... 18
4.3. Edge detection ... 18
4.4. Image aligning ... 19

4.4.1. Aligning images from the scanner .. 19
4.4.2. Aligning images from photos ... 19

4.5. Classes for areas recognition .. 20
4.5.1. Rectangle detection .. 20
4.5.2. Dotted lines detection .. 20
4.5.3. Detection of types and groups of detected areas ... 21

4.6. Gui .. 21
4.7. Performance .. 21

5. GuiCommon module ... 22
5.1. API ... 22
5.2. Form holder .. 22

5.2.1. Table layout form holder .. 23
5.3. Database input helper classes .. 23
5.4. Flow layout in a scroll area .. 23
5.5. Snapping to lines ... 24

6. Form Editor .. 25

Form Tools

iv

6.1. Overall architecture .. 25
6.2. Data models .. 25

6.2.1. Basic overview .. 26
6.2.2. Control model ... 26
6.2.3. Input models ... 26

6.3. Paper form editor .. 27
6.3.1. Paper graphics view overview ... 27
6.3.2. Form area item ... 28
6.3.3. Paper graphics view .. 28
6.3.4. Synchronizing selection ... 29

6.4. Electronic form and datastore editors .. 29
6.4.1. Electronic form designer .. 29

6.5. Toolbar action management ... 31
6.6. Error handling ... 31
6.7. Property handling .. 32

6.7.1. Properties model ... 32
6.7.2. Property view and item delegate .. 33
6.7.3. Custom property models and views ... 33

6.8. Script Editor .. 34
6.9. Script Debugger .. 34

7. Filler .. 36
7.1. Overall architecture .. 36
7.2. Data storage ... 36

7.2.1. CSV data adapter ... 36
7.2.2. Database data adapter .. 37

7.3. Data evaluation and conversion .. 37
7.3.1. Data flag map ... 37
7.3.2. Data validator ... 37
7.3.3. Input convertor holder ... 38

7.4. Data model ... 38
7.4.1. Overview .. 38
7.4.2. Data conversion .. 38
7.4.3. Data validation and evaluation ... 38
7.4.4. Copy and paste .. 39

7.5. Data view classes ... 40
7.5.1. Form view .. 40
7.5.2. Table delegate .. 40

8. Final notes ... 41
8.1. Comparison to other tools .. 41
8.2. Development process .. 41
8.3. Development distribution .. 42
8.4. Remarks to the chosen solutions .. 43

8.4.1. Development tools .. 43
8.4.2. Architecture decisions ... 43

8.5. Future work ... 43
9. Contacts .. 44
Used software components ... 45

v

List of Figures
1.1. Overall architecture of the Form Tools project ... 1
2.1. The structure of the form document .. 4
2.2. The inheritance hierarchy of form items .. 4
2.3. Program generation and evaluation .. 9
8.1. Number of lines during the development ... 42

1

Chapter 1. Overview
1.1. Application overview
The Form Tools project tries to ease the process of digital form creation, its distribution to the user,
collecting the filled in data, managing and printing them back to the paper form. A form consist of three
parts, its layout on a paper, any number of electronic form definitions (inputs) and any number of storage
definitions (CSV or DB).

We created a powerful and easy-to-use form designer with support for paper form digitalization (there
is an area detector which helps the user fit the areas to the correct positions, calibrate the image ac-
cordingly). Then both the storage and input form definitions can be created automatically based on the
paper definition. There is a scripting support for the form controls which enables quick and easy creation
of dynamic forms.

The created form can then be exported for filling in via web or in a dedicated application from the
package, Form Filler. Form Filler can work with many data sources at once, can be used for managing
the collected data and offers previewing and (batch) printing of the selected data to a preprinted paper
form.

1.2. Modules
The whole project is composed of several modules. Each module provides specific services and inter-
face for using these services. The overall architecture of the modules is depicted on the figure Figure 1.1,
“Overall architecture of the Form Tools project”.

Figure 1.1. Overall architecture of the Form Tools project

Lib

Script

Editor

GuiCommon

OCR Filler API

Overview

2

The most important module is the Lib module. This module provides classes for manipulating with the
form document, evaluation of the control programs, printing the filled form, exporting the document to
the various formats and for the image acquisition.

The Script module is helper module which provides API for manipulation with the source codes of EC-
MAScript. It is not integrated with the Lib module, because it contains modified source codes of the
Qt library.

The GuiCommon module contains common graphic user interfaces, which are used by other modules.
For example a dialog for printing is shared by other modules. This module also provides base classes
for views and some tools for setting different kind of behaviour.

The OCR module is responsible for area detection and image processing. The name of the module is
not accurate, because in the fact it does not perform optical character recognition. It recognizes only
areas and dotted lines in the scanned image. It is also responsible for some simple image settings and
detecting areas type. The name remains because of historical reasons.

The Editor is the application in which the document can be designed. It provides a user interface for
complete creation of the electronic form — the user can scan the image, recognize areas and transform
the detected areas into the form controls. The properties and behavior of these controls can be also
edited in Editor. Finally the user can define the various inputs of the data for the form.

The Filler is part of the project, which is responsible for filling the documents, which were designed in
the Editor. It also provides the functionality for saving and loading the filled data.

The API module provides public interface for the mentioned modules, so any developer can use the
designed documents and the electronic form in his own application. The interface also provides methods
for printing the document.

1.3. Coding style
If you want to understand source code of the project well, it is good to be familiar with the used naming
and formatting conventions in the sources. Coding style of the source codes is influenced by the coding
style of the Qt library[QtLib]. The main reason for this decision is that the source codes are homogenous
and much more readable. The main rules are following:

• In project there are used medial caps for compound identifiers. Names of all types and classes begin
with the upper case letter and all other identifiers begin with the lower case letter.

• Classes have no public member variables. These variables can be accessed through the setters or
getters. All members variables has a name like this m_nameOfVariable.

• Getters always have a name like nameOfVariable and setters always have a name like setName-
OfVariable

• For public enumeration types we use our own way of their declaration, because it provides name
encapsulation and more comfort. More details can be found in the file Lib/enum.h.

3

Chapter 2. Lib module
2.1. Overall architecture
The Lib module is a core module of the FormTools project. It provides almost all the non-GUI function-
alities except the optical object recognizing. The main services which this module provides are:

• Manipulation with the form document, realtime checking of validities and availabilities of its properties
and its items, saving the document to a file and loading the instance of the document from a file.

• Manipulation with the programs of form items, program transformations, generation and evaluation.
The module also converts data between various data types.

• Printing and drawing the content of the document.

• Exporting the form document into various formats.

• Image acquisition from a scanner.

All classes in this module are in the namespace FTLib.

2.2. Form document
The form document is quite complex structure of many different classes. Because manipulation with the
document should be easy and flexible, there is an inheritance structure among the classes. So a client
of the module has an uniform way how to work with the structure of the document and uniform way
how to work with properties of each item in the document. The hierarchy of the objects in the document
corresponds to the GUI, so there is a system of form control groups and form controls. Each form control
has list of paper areas. There is also a list of all pages in the form which contains detected areas and
paper areas of the form controls, a list of input container contains all input controls etc. The structure of
one document is depicted in the Figure 2.1, “The structure of the form document” and the the inheritance
hierarchy is shown in the figure Figure 2.2, “The inheritance hierarchy of form items”. The detailed
description of all classes is given in the rest of this section.

Lib module

4

Figure 2.1. The structure of the form document

Pages

Form controls

Input control containers

Form page 1

Detected area 1

Detected area 2

Form page 2 Detected area 3

Form page 3

Form document

Form control container

Csv controls container

Application controls container

Csv controls container

Application controls container

Form control 2

Control group 1

Control group 2

Paper area 3

Form control 3

Form control 4

Paper area 1

Paper area 2

Csv control 1

Csv control 2

Application control 1

Application control 2

fcontrol1

Db control 1

Db control 2

Figure 2.2. The inheritance hierarchy of form items

FormItemFormPropertyContainer

FormControlContainerFormControlGroup

FormArea

FormDocument

FormControl

InputControlContainer

InputControl

PaperArea

DetectedArea

CsvInputControlContainer

DbInputControlContainer

AppInputControlContainer

CsvInputControl

DbInputControl

AppInputControl

2.2.1. Form item
The base class of each item in the document is the class FormItem. The method itemType returns
the real type of the item, e.g. FormControl, PaperArea etc. An instance of this class can be part
of the form document or can be standalone. The method document returns a pointer to the owning

Lib module

5

document or 0 if the item is standalone. There are also signals bound and unbound that notify whether
the item is bound to the document item or unbound from the document. The slot validate causes
revalidation of the item. This method should be called whenever some external event can cause, that
validity of the item has changed.

Except the public interface there are some helper methods which can be used by derived classes. The
most important methods are validateImpl and validatePropertyImpl. The validation is quite
complicated process, because the item must notify the owning document about its errors. When the
item is unbound it must clear all its error from the document and when it is bound it must send its errors
to the document. The item does all these things itself. Derived classes should implement only those
methods and validate the given property or optionally the whole object. From the mentioned methods
some of appendError, FormProperty::setError, FormProperty::setWarning can be called.
The form item then collects all errors which have occurred during validation and propagates them into
the owning form document.

2.2.2. Form property container
The form item is base class of each item in the form document, but it is not the root in the inheritance
hierarchy. The root is a class FormPropertyContainer. This class provides interface for enumerating
all public properties of the object. The uniform way for enumeration all the properties is important for
example for the GUI, ,because any kind of properties editors can be developed and it can be used for
any item in the form document.

The most important method is the method properties which returns a list of all possible properties of
the container. The properties can be enumerated also through the propertiesMap, which returns also
unique identifiers for each property. There are also signals for notifying about changes in the proper-
ties. The signal propertyAvailabilityChanged is emitted when availability of some property has
changed, propertyValidityChanged is emitted when some property has become valid or invalid
and finally propertyValueChanged is emitted when the value of some property has changed.

For the derived classes there are two very important methods. The method load which loads values
of properties from the given element 1 and save which stores values of the properties into the given
element. Form items do not have to take care of storing and loading its values, they can easily delegate
this operation to these methods.

Form property
The form property container provides API for enumeration all its properties. This enumeration is returned
as the list of instances of the class FormProperty. This class provides interface for obtaining the
description (methods label which returns short description of the property and help which returns
more information about the property), state of the property (the method state) which can be one of
Valid, Warning and Error. If the property is not Valid, then message returns information about
what is wrong with the property. The method isAvailable determines availability of the property.
When the property is unavailable, user should not be able to read its value or set a new value of the
property. Finally value returns value of the property as an instance of Property.

For the form items there are useful methods setError, setWarning and clearError that are usually
called in the FormItem::validatePropertyImpl. Method isMandatory determines if the prop-
erty must be stored in the file when loading the document. If the property is not mandatory, then de-
faultValue is used. Mechanism of mandatory and optional properties exists because of the backward
compatibility of the form document file. New optional properties can be easily added to the document
and the new version of program can still load the files from the previous versions.

2.2.3. Form document
An instance of the FormDocument holds the content of the whole document. It provides methods for
accessing the form controls (the method controlContainer), a list of its pages (the method pages)

1 See the section called “Storage element”

Lib module

6

and all its inputs (the method inputsByType and the method inputsById). The method errors
provides information about the invalid form items in the document (each item takes care of its own validity
and must pass its errors to the owning document). The signal errorChanged notifies, that some item
became invalid or valid. Methods save and load save or load the complete structure of the document
to or from the file. The more information about this process can be found in the section the section called
“Implementation of saving and loading document”.

2.2.4. Form control
Form control is encapsulated by the class FormControl. It has properties which holds its programs,
data type, identifier etc. Most of the methods are only getters and setters to its properties.

Besides these methods there are some methods for managing the form control. For traversing the form
document structure there is the method paperArea which returns a list of all paper areas of the form
control. The method parent returns pointer to the owning form control group.

For changing the structure of the document, there is the method moveTo which moves the control into
the destination group, unbindFromControlGroup which unbinds the control out of the owning group
and makes it standalone. The method unbindPaperAreas removes all paper areas from the control
and returns the list of all of them.

For easy implementation of the control programs debugger there are methods fillSnippets which
gets a list of instances of CodeSnippet and loadSnippets which loads the control programs from
the given snippets.

2.2.5. Form control group
The class FormControlGroup encapsulates the list of form controls and the list of other form control
groups. Form controls and the form control groups can create hierarchy such as a filesystem. And
form control group is like folder in the filesystem analogy. The only property is its identifier. The method
formControls returns list of all form controls in the group and the method subgroups a list of all
subgroups. The method parent returns a parent group in the hierarchy or 0 if the group is the root
of the hierarchy.

It also provides methods for finding a subgroup or a form control by the given identifier (methods con-
trolById and groupById), moving a group into another (a method moveTo), unbinding a group (a
method unindFromControlGroup) and unbinding all its subgroups and form controls (methods un-
bindFormControls and unbindSubGroups.

For the GUI there are methods defaultControlName and defaultGroupName which return a new
unique name for a new control or a new subgroup.

2.2.6. Form control container
It is the root in the form control groups and form controls hierarchy. It is logically derived from the class
FormControlGroup. It adds methods controlByJid which finds form control by the given jid, con-
trolByPath which finds form control with the given path and method listOfControls which returns
list of all controls in the container.

2.2.7. Form page
This class encapsulates one page of the form document. It contains properties like a background image,
its size, resolution, size of the page and most of the methods are only setters and getters of this prop-
erties. The page can return list of all paper and detected areas which are placed on the page (meth-
ods paperAreas and detectedAreas. These areas could be easily removed from the page (meth-
ods removeAll...Areas). When the offset of the background image has changed then the method
moveAreas could be called, when the ratio of the page has changed the method scaleAreas should
be called.

Lib module

7

For changing the order of the pages in the document there is the method moveTo.

2.2.8. Form area
A class form area is a base class of detected and paper area. It extracts common methods of both type
of areas into one interface, so GUI can work with these areas in the similar way. It provides method for
getting and setting coordinates and size of the area on the page (method rect and setRect). Because
GUI should sometimes draw the content of the area (e.g. static paper area) there are methods update
which prepares the area for drawing, boundingRect which returns bounding rect of the graphical
content and paint which paints the content to the given painter. These methods are designed to be
easily called by the implementation of the QGrahpicsItems which encapsulates the area in the GUI.
The method clone should make easier copy-paste operation in the GUI.

Paper area
A class PaperArea corresponds to the area of the graphical output of the form control. It is just container
of various properties which influence the type of the output (selection or text) and the style of the output.
Almost all methods access only this properties.

Methods moveTo can move area from one form control to another, the method setPage can set the
page where the area should be placed on. Methods unbindFromControl and unbindFromPage
makes the area standalone or independent on the page.

Detected area
The class DetectedArea corresponds to the area which was detected by the OCR module. The de-
tected area is almost only the container of properties. The only interesting method is setPage which
sets the page where the detected area is placed on.

2.2.9. Input control
The class InputControl provides the data to the evaluator when the document is being filled. Each
input control should be associated with one form control and provides data to the form control. Input
control has its own data type, which is independent on the data type of the associated form control. The
only restriction is, that conversion between these types must exist. This technique enables for example
the text edit to be the input for the the form control with the type Date and time. Because dates, times
etc. can be inserted in the various textual format each input control has properties which describes the
format.

The important method is dataType which returns the type of the data which the control provides. There
are also methods moveTo and unbindFromContainer for changing the structure of the input controls.
The method setFormControl associates the input control with the given form control. The method
type returns the type of the concrete implementation of the input control.

This class is meant to be derived by the concrete input controls such as application input control, csv
input control etc.

Application input control
The class AppInputControl encapsulates the application input. For example a dialog or a HTML
form. The input control is enhanced by the type of the application input control such as a text edit,
a checkbox or a combobox.

Csv input control
The class CsvInputControl encapsulates one item in the Csv file. The situation is very simple, be-
cause all csv controls have only one data type — the string.

Lib module

8

Database input control
The class DbInputControl encapsulates one item in the SQL Lite database. The implementation is
almost the same as the implementation of the CsvInputControl.

2.2.10. Input control container
The class InputControlContainer contains a list of the input controls. The container contains only
the controls of the same type and this type is returned by the method type. The container also contains
properties which contains formatting string for the textual representation of the nontextual data such as
date and time. The input controls in the container can inherit these formatting strings from its container.
The method moveTo and unbindFromDocument can be used for changing the structure of the con-
tainers in the document.

Also this class is meant to be derived by the concrete implementations.

Application, csv and database input control container
These classes inherits from the class InputControlContainer. They only enhance the properties
about technology specific settings. In the csv there is important a separator and a quote character. For
the database the name of the table and the name of the column with the primary key is important.

2.2.11. Saving and loading the document
The whole document can be stored and loaded from the disk which is very important. There are some
classes which provides methods for making this process easier.

File storage
The class FileStorage provides functionality for storing multiple chunks of the binary data to one file.
The format of the file is the same as format of uncompressed ZIP file. The chunks are numbered from
zero to the count of the chunks minus one. Each chunk can have its own suffix.

The most important methods are append which appends the given chunk to the file and dataAt which
returns chunk at the given index. The method save saves all chunks to the file and the method load
loads the chunks from the file.

Storage element
The instance of the class StorageElement can contain set of named and typed values and the named
list of other instances of this class. In fact, it is almost same as the API for working with XML document,
where this class corresponds to the XML element and the instance stores and loads its content to the
or from the XML element. But this class is designed to check types of the values and their existence.
This is useful because during loading the document almost none additional checks have to be done.

The next enhancement is, that binary data can be easily stored to the element. It is thanks to cooperation
of this class with the class FileStorage. The binary data are stored as a chunk to the file storage and
to the XML element only the number of the chunk is stored.

The most important methods are ...Property (intProperty, imageProperty etc.) which return
the value which is stored under the given name and methods set...Property which save the new
value to the element under the given name.

The method save saves the whole content recursively to the given XML element and the given file stor-
age. The method load loads the content recursively from the given XML element and the file storage.

The DTD of the XML which is created by the method save can be found in the file ftd.dtd.

Lib module

9

Implementation of saving and loading document
All item in the document has pair of methods save and load. These methods have one parameter —
the instance of StorageElement, where the content of the value should be stored or from which the
data should be loaded.

When the document should be saved, it creates the instance of a root storage element, then it calls the
mentioned method save on its child elements and they save their content and recursively content of
their children to the given storage element. When this process is done one instance of the root element
of the XML document and one instance of FileStorage is created and the root storage element is
stored to this pair. See the section called “Storage element”. In the end the XML document is serialized
to the chunk number 0 of the file storage and the file storage is saved to the file.

Loading is the same process as saving but reverted.

2.3. Program manipulation
One of the features is that user can customize the behavior of the controls. User can write programs
which determine values, validities, availabilities etc. of the controls. The programming language which
is used for this customization is QtScript which is supported by the Qt library. QtScript is compatible
with the ECMAScript which is compatible with JavaScript. Thanks to this our documents can be easily
used in the web environment.

Figure 2.3. Program generation and evaluation

Program generator

Dialog evaluator Model evaluator

Dialog which is being filled Evaluated data

CSV file Database Filled dialog

Patterns evaluator

Printer or preview

The process of the evaluation of the data in the document is depicted in the Figure 2.3, “Program gen-
eration and evaluation”. First one complex program which aggregates all partial programs of the form
controls is generated. The source code of the program is passed to the evaluator. The evaluator reads
data from the data source and writes the evaluated data to the data consumer. The first variant is that the
producer and also the consumer of the data is dialog, which also processes notifications about changes
of validities and availabilities of the controls. The second variant is, that the producer and consumer are
separated. In this case the values of all controls are passed to the consumer for the next processing.

There are many classes that provide methods for manipulation with the form control programs. These
classes could be divided into this groups:

• Classes for program generation

• Classes for evaluating programs

Lib module

10

• Classes for program transformations. These classes are heavily used by the Editor

2.3.1. Program generation
Each form control has many different programs. For example program which calculates a value of the
control, program which checks validity of the control, its availability etc. These programs should be
merged with programs of other controls into the one big program which can be easily evaluated. But
this main program can differ when it is used in the HTML page or when it is used for the filling dialog.
So it must be generated in the different ways.

Although the main program can have various forms, some properties of the program are same in all
representations and each representation must satisfies some requirements. The common requirements
are these:

• An object model of the controls which corresponds to the hierarchy of form controls and form controls
group must be created. Thanks to this control programs can access results of the other form controls.

• The program must ensure that partial programs of the controls will be evaluated in the right order.
When there is a cyclic dependency it must be correctly detected.

• The program must keep graph of a data dependency among the form controls. So when a value of
some control has changed only such controls that directly or indirectly depends on this value should
be reevaluated.

• Programs must correctly detect an usage of the invalid value in the program of the form control and
marks the result as invalid. It is important because the result of the form control program which de-
pends on the invalid value is also invalid and user should be notified about it.

• The program must provide methods for interacting with the source of data (for example a dialog or
a HTML form).

There is a template program which implements almost all of these features and only some parts — such
as the object model or the reaction on some events during the evaluation — must be inserted into the
template. program.js contains this template and all relevant information are written in comments in
this file.

Program generators
The class ProgramPreprocessor is a simple implementation of the preprocessor. The syntax is in-
spired by the C# preprocessor with some restrictions. It also supports one new command #tr which
is used for translation of the strings in the source program. Thanks to this preprocessor the properties
of the program template can be changed. It is also used for translating the builtin packages with the
global functions.

The base class of all program generators is ProgramFiller which is application of Template method
design pattern. It reads the template program (which is preprocessed by the ProgramPreprocessor
and when it found any incomplete part in it, it calls a corresponding method which should generate
the missing content. It also translates language dependent parts of the template program. All program
generators should inherit this class and implements the abstract methods for filling the incomplete parts.

Intermediate program generator

Very important class is IntermediateProgramGenerator which generates parts which are com-
mon for all destination technologies. So the intermediate program fills only these parts and left parts
which depends on the destination technology untouched. The intermediate program can be a little bit
customized. For example if the setValue callback should be called for all controls or only for non-
input controls. These customizations are given in the constructor of the object and are passed to the
program preprocessor.

Lib module

11

C++ program generator

The class CxxProgramGenerator is derived from the intermediate program generator and fills the
technology depended parts. This generator generates program which could be easily integrated to the
C++ environment. It passes all event callbacks to methods which are implemented in the C++ so com-
munication with the QtScript program is very easy.

Input program generator

The class InputProgramGenerator generates a program for usage when the data are read from
the input. The conversion functions which convert data types of the input control to the data type of the
form control are generated. The setValue callback is not called for the input form controls. And default
values of the form controls are calculated.

Model program generator

The class ModelProgramGenerator generates program for the situation when the data are read from
the input and written to the given instance of the FormData. It also supports generation of the program
which performs no conversions and assumes that the input data are in the correct format. The setValue
is always called, so all data are written to the output form data.

Html program generator

The class HtmlProgramGenerator is derived from the intermediate program generator and generates
program which could be used in the web environment. It fills the technology dependent parts to ensure
correct behavior. The resulting program can easily cooperate with the HTML form.

Package management
When the user writes the custom programs, he can use prepared packages of functions. The class
PackageManager manages these packages and can append their content to the program which is
generated. So the functions in the package can be easily called. There are two kinds of packages.
Internal which contains functions for internal purposes and user cannot influence their usage and user
packages which can be imported and used by user. The important methods are importPackage and
importInternalPackage which write the content of the given package to the given program writer.

Convertor management
The class ConvertorManager contains database of all conversion functions. For each conversion it
provides the name of the function and required internal packages for the conversion.

2.3.2. Program evaluation
When the program is generated it should be evaluated. Fortunately the Qt library provides the interpreter
of the QtScript so binding the program written in the QtScript to the code written in the C++ language
is quite easy. Unfortunately some problems remain to be solved.

Function evaluator
The first thing which must be solved is that program can contain an infinite loop. So some time limit
for the evaluation must exists. These functionality provides the class FunctionEvaluator. This class
is wrapper for the QScriptEngine and adds methods for evaluating functions and programs in the
given time limit. If the evaluation does not finish during the limit an exception is thrown. If some time-
consuming operation must be done during reaction on some callback from the script, method pause
should be called. This method stops the measuring of the script evaluation time so the operation will
not influence the limit for the the script evaluation. After the operation and before returning the process
back to the script the method resume should be called. This method starts measuring the time for the
evaluation again.

Lib module

12

Program evaluator
One step higher in the class hierarchy is a class ProgramEvaluator. This class encapsulates com-
munication between the generated program and the the rest of the program written in C++. It inherits
methods for evaluation from FunctionEvaluator so it does not have to take care about time limits.
The class initializes the QScriptEngine and registers functions in C++ that will be called in the QtScript
program callbacks. This class must obtain in its constructor an instance of ProgramEventHandler
to which all callbacks are passed. Thus the evaluator does not take care how to handle the events
it only forwards them to the handler. The class also provides methods evaluateAll which calls the
function evaluateAll in the script and the method valueChanged which passes its the argument to
the valueChanged in the script and calls it.

Program event handler

The class ProgramEventHandler is the abstract template class which must be implemented by the
client of ProgramEvaluator. Through the handler the evaluator reads the form controls data, sets
the evaluated data of the form controls and notifies about changes of availability, validity or of a set of
possible values of the form controls. Data are exchanged through instances of the template parameter
of the class. So it can be used for reading QVariant from the dialog or FormValue when the whole
model is evaluated.

Utils for program event handler

Because the interface ProgramEventHandler is quite important, there exists some prepared imple-
mentations of it. The class ProgramHandlerAdapaterForVariant adapts the interface so the com-
munication is through instances of QVariants instead of QScriptValues. The variants must be of
same type as the corresponding input controls.

The class EventHandlerValidatingAdapter is partial implementation of the ProgramEven-
tHandler. It remembers all errors which occurred during evaluation and after evaluation it is easy to
find out if some errors have occurred and enumerate them. This class could be used when the whole
data model of the form document is evaluated. Other methods are left unimplemented.

The class EventHandlerValidatingWriterFormValue enhances implementation of the class
EventHandlerValidatingAdapter. The class remembers all values which where evaluated by the
evaluator in the given form data.

The classes EventHandlerReaderVariantToFormValue and EventHandlerReaderFormVal-
ues are very simple implementations of the mentioned interface. They read data from the instance of
the class FormData or from the map from jid to the QVariant with the value of the corresponding
form control and saves the evaluated values to the output instance of the FormData. They inherit the
EventHandlerValidatingWriterFormValue so list of errors is remembered. These classes are
used for evaluating the data model of the document, for example when printing the document.

Data conversions

When filling the form in the conversions between various data types must be performed. For example
when data are read from the storage (for example from a CSV file) and the data are in other format
than the format which is required for the filling. The interface InputConvertor provides methods
(toFormValue and fromFormValue) for converting the data of the input control to the instance of
the FormValue and vice versa. One concrete implementation is the class ScriptInputConvertor
which uses the convertors written in the ECMAScript. There is no support for direct conversion of data
in one input control to the other, but two convertors can be created one from the source data to a form
value and second for converting the form value to the destination data.

High-level evaluators
The class ProgramEvaluator is quite low-level. The user of the class must generate the appropriate
program, pass it to the evaluator and choose the right implementation of the interface ProgramEven-

Lib module

13

tHandler. Because of this, there is class HighLevelEvaluator which is the base class for easy-
to-use evaluators. It provides a minimalistic API and wraps both a program evaluator and a program
generator. This class is inherited by the DialogEvaluator and the ModelEvaluator. The dialog
evaluator should be used for evaluating dialogs because it uses instances of QVariant as the com-
munication medium and calls the method setValue only for non-input form controls. It also returns the
list of default values of the form controls and also calls setValues for the enumeration form controls.

The class ModelEvaluator should be used for evaluating complete data of the model. It gets the input
form data and reference to the output form data where the result will be stored.

These classes contain the method init which initialized internal evaluator with the appropriate pro-
gram. After calling this method, evaluator is ready to use.

Patterns evaluation
The class PatternsEvaluator is used for evaluating the pattern programs of the form controls. These
programs are not a part of the data model and they are used only when printing the form document.
It also inherits the class FunctionEvaluator because the programs are also written in QtScript so
there is also the problem with infinite loop. The main method is evaluate which evaluates the pattern
program of the form control with the given jid. The evaluator evaluates all expressions and methods in
the program except the evaluation of the method format which is passed to the PatternEvaluator
which can evaluate arguments of this method.

2.3.3. Program manipulation
In the GUI of the form document editor the user can edit the source codes of the form controls program.
The user can edit them as the properties of the form controls. There is only one problem to solve.
Programs in the form = expression; must be transformed into the return expression;. But there
are more features when editing the source codes.

Program utils
The class ProgramUtils provides some methods which do common operation with source codes. The
most important method is the method makeProgramSafe which reads the source code and optionally
overwrite comments and strings in quotes with the spaces. This is very useful, because the source codes
can be then processed with regular expressions. For example when extracting arguments of the method
is needed, it could be found as all characters between (and) because all possible character) in the
string arguments which could break this rule are removed. The “safe program” has the same layout, so
when the arguments are matched and their position and length is found in the safe program, the same
numbers (position and length) can be used in the original program for extracting the real values.

Program writer
The class ProgramWriter provides methods for writing prettier source codes. In fact it wraps
QTextStream and has methods for indenting and unindenting lines. All program generators use this
class so the textual output of the generators could be easily read by the man.

Program representation
One of the features in the form document editor is that user can view all the programs of form controls in
one editor. This editor has some features which were not easy to implement. The order of the programs,
indentation and coding style should be kept between editations. User can write global variables and
global function in this editor. So there must be a mechanism which reads all programs of form controls,
merges them with the global code and makes one string representation of all these things. The user
can edit this representation then and when is finished, the modified string is parsed, the bodies of form
controls programs are extracted and saved back to the owning form controls.

All these operations performs the class ProgramRepresentation. As the input it expect a pro-
gram template. It is a string with the special marks. These marks have the form like /

Lib module

14

__@ProgramName(uid) @code/ or /*__@ProgramName(uid) = function { @code }*/.
These marks represents one form control program. ProgramName is name of the program (valid, value,
available etc.) uid is the uid of the control and @code is the body of the program. The first variant is for
programs in the form = expression; and the other for programs like commands; return expres-
sion;. When processing template these marks are replaced by the real values of the form controls,
so this mechanism handles correctly when the form control is renamed. It must be also handled when
the user changes form of the program in the properties of the form control. For example from form =
expression; to the other form, but this is only technical detail.

The opposite problem is making the program template from the edited representation. In this case the
abstract syntax tree of the source code is constructed. In the tree the bodies of the programs are found
and replaced by the marks. Other content such as global functions and comments lefts untouched.

Communication with this class is performed through the string with the edited representation or the
program template. Bodies of the programs are exchanged through instances of the class CodeSnippet
which is designed for the purpose.

2.4. Printing
The printing of the content of the form document is in fact the most important thing, because it is the
final output from the whole program. This part takes care only about the graphical output. Evaluation
of the data which should be printed is described in the section Program evaluation. The only problem
which remains to solve is formating the output. Area has it own rectangle on the paper and its content
should be printed to this rectangle.

2.4.1. Form printer
The class FormPrinter provides all services related to the printing. It gets instances of the form docu-
ment, its data and a list of instances of QGraphicsScenes. One scene for each page of the document.
Printer creates one instance of AreaPrinterItem for each paper area and add them to the scenes.
The area printer item inherits the class QGraphicsItem and is responsible for painting the content of
the corresponding area to the scene. This design is flexible enough to draw the document to the screen
and show the preview of the result or print the document to the printer or to the PDF.

Main method of the class is init which initializes the printer and the method draw. This method reads
the data from the input and distributes it to the area printer items. It must be also called when the input
data has changed to update the content of the items.

2.4.2. Area printer
The class AreaPrinter is responsible for printing content of one paper area. The method pushValue
passes the content to the printer. According to the capacity of the paper area and to the overflow policy
this method can return excess of the content. This content can be passed to the next area. This method
also prepares internal structures for painting. Because of performance reasons the content is formatted
only once. After the formatting, the positions of the words are stored and thus we do not have to perform
formatting again during next repaint.

2.4.3. Area printer item
The class AreaPrinterItem only adapts interface of the AreaPrinter to the QGraphicsItem so
it can be added to the QGraphicsScene.

2.4.4. Text printer
Whole textual output is created by the class TextPrinter. This class gets the string and formats it
to the given rectangle. It supports features like overflow policy which influences the behavior when the

Lib module

15

string is to long. The string can be truncated and the excess is returned or the font size can be made
smaller or the bottom border (if the area is multiline) or right and left border (if the area is singleline)
of the rectangle can be just ignored.

Because there are no methods in the Qt library which can be directly used, all the formatting functions
implements the class itself.

2.5. Exporting the document
The finished document can be exported to the various formats. The basic export is to the lite version of
the file. The suffix of the file is .ftx and it is almost the same as the .ftd file, but it does not contain
images and detected areas. So the resulting file is much smaller.

These .ftx files can be used for example with the FormTools API, because images and also detected
areas are useless for filling or printing forms.

2.5.1. HTML export
The form document can be exported to the HTML file. This HTML file should provide the same function-
ality for filling as the electronic form. The application input controls are mapped to the corresponding
controls which are allowed in the HTML language. There is also included Javascript code, which eval-
uates the programs and responds to the user input.

The process of exporting is performed by the class HtmlExport. The process is divided into the sep-
arate parts. The generation of the HTML header, the script and the form. Thanks to this, the resulting
HTML file can have separated Javascript code and the HTML data. The Javascript is generated by the
class HtmlProgramGenerator. The generated file is XHTML 1.1 valid.

2.5.2. PHP export
Generation of the HTML file is quite unusable, because it cannot be easily customized. That is why
there is also possibility to generate file with functions written in PHP, that manage to generate separately
Javascript code and also the HTML form. These functions have parameters which influence the basic
properties of the result. The usage is very easy. The developer of a web page just include the generated
file and calls the provided function. So the form can be placed anywhere on the page. There is also
function, which makes loading the content of the form easy. Developer must only fetch the array of the
form data for example from the database and pass them to this function.

The generation of the PHP file is performed also by the class HtmlExport.

2.5.3. Export for Filler
Documents described by the form document can be used to draw an Qt form which will allow to fill in
the data of the input form controls and to store these data to one of the defined data storages. In Form
Tools project there is a dedicated application called Filler which allows to do this.

The main goal of the Filler is to be as simple as possible. Therefore, the author of the document has
to specify some details regarding filling and saving of the data. All the required information is stored
in the FormToolsProject instance. The project contains list of data storages. Each data storage is
described by the class ProjectItem. The project instance is serialized to the xml file.

2.6. Image acquisition
On some platforms the scanning is supported. On the Windows the TWAIN[TWAIN] and on the Unix
the SANE[SANE] library are used. The implementations is inspired by the documentation of the TWAIN
and by the documentation for the SANE. Because these standards are very different there is class
ImageSources which provides one interface for both technologies.

Lib module

16

2.6.1. Image sources
The class ImageSources provides easy-to-use interface for manipulation with scanners. The method
isScannerSupported returns true when the scanning on the platform is supported and false if it is
not. Methods selectDialog and scanDialog returns pointers to single instances of SelectDialog
respectively ScanDialog.

Select dialog
The class SelectDialog has only one method exec. This method shows the dialog for selecting the
source of the images.

Scan dialog
The class ScanDialog encapsulates the scanning process. The method exec shows the dialog for
setting up and run the scanning. The method image returns the scanned image if scanning was suc-
cessful and the process was not canceled by the user.

17

Chapter 3. Script module
The Form Tools project heavily use manipulation with the ECMAScript source codes. The Qt library
provides functions only for evaluating them and no for manipulation with the source codes. The evalu-
ation of the scripts is implemented in this way: First the abstract syntax tree of the program is created
and then this tree is evaluated. The syntax tree holds the structure of the source code so it can be be
traversed so the transformation of the source can be performed much more easier. The problem is that
the syntax tree which is created by the Qt library is not accessible with the official interface.

Fortunately Qt library is open source and are released under the LGPL license. So the source codes
can be used and modified for the purposes of the Form Tools project with the restriction, that these
changes must be also under the LGPL license.

The only part which is needed from the library is that which creates the syntax tree from the given
source. But the sources must have been a little bit modified. The first modification is, that nodes of the
tree stores their real position in the source code as an offset from the begin of the input and their length.
Originally the nodes contains only the number of line and number of column where they are. There was
also a bug which caused, that position of some nodes in the program were set to wrong values. So this
error had to be fixed in this module.

Second modification is that other memory management is used. The problem is, that during construc-
tion of the tree some error can occur. At this moment the tree is not complete and can not be eas-
ily deleted from the memory. The solution is, that every instance of the node is registered in the
SyntaxTree::NodesHolder and all the nodes are deleted together this instance of this class. So
tree do not have to be complete.

The next important change is, that the lexical and syntactic parser are modified to support the import
of packages. The only change in the lexical parser is addition of new keyword import. In the syntactic
parser the gramatic had to be enhanced.

The last modification is that the syntax checking was improved. The original syntax checking returns the
error messages only in the english. These messages can be easily translated now and they are more
accurate. Originally the messages were too common and sometimes even wrong.

18

Chapter 4. OCR module
4.1. Overall architecture
The OCR module is responsible for object recognition and providing additional information about them.
Its core job is to recognize shapes which could be form areas, detect rotation of the given image and
finally to do some simple transformation of the image. This provided functionality is implemented by
separated modules where every module typically corresponds to some part of the image processing.
Since those modules are almost independent, it is possible to replace any algorithm of processing by
another one. This architecture was done for future implementations, because we expect to have more
than one algorithm for some parts of the recognition and thus better results can be provided.

The main modules are following:

• Image denoising

• Edge detection

• Image straightening

• Areas recognition

• Detection of type and group of detected areas

4.2. Image denoising
For image denoise are responsible classes which implement the interface DenoiseFilter. So far the
only implementation is Gaussian filter, because of its speed and good results in denoise. In addition
it preserves edges which is very important for further analyzes. Our special feature is that we support
denoise in one direction (horizontal or vertical). Thus edges in one direction are preserved while in the
other one the noise is reduced. All calculations are parallelized. The filter behavior is determined by
one number (intensity) which is converted to Gaussian filter parameters, so the filter setting is very user
friendly.

4.3. Edge detection
The interface EdgeDetector provides abstract methods for edge detection. The only implementation it
is the class CannyEdgeDetector. The name is a little bit confusing since it is not Canny edge detector.
This class is only inspired by its idea. We made many tests with all edge detectors we know but the
results were not sufficient at all. In fact we need precision about 2 pixels per line, but those detectors
are not created for such tasks. They are good when copying shapes, however you cannot tell them
that you expect shapes to be a line. In addition, if you know that you are looking for lines you can do
additional heuristics. So we decided to write our detector using the fact that we know that we are looking
for horizontal and vertical edges.

First let's assume that we want to find all horizontal edges, so we perform denoise in horizontal direction.
This is very important for the next step. Then we calculate gradients in the image using Sobel operator.
Because we used changed denoise filter, gradients in vertical direction are preserved (no denoise in that
direction was performed), while all noise (in this case, we assume that noise is everything which is not
horizontal line) is made smaller. This is very important step since it improves results significantly. The
main benefit is smaller sensitivity for edge detection settings. Analogously the detection is performed
for vertical edges.

We still assume that we have just calculated Sobel operator (the method calcGradients). There is
a little interesting thing — it is much faster to unroll the for-cycle for calculation of the gradient of the one
point. Maybe it is too technical detail but we had to made many decisions during the implementation

OCR module

19

of this library like this, and this is one example of what possibilities we had to check for almost every
line of the code. After that we use quite usual technique — the points which have the maximal value of
Sobel operator are preserved and all other are set to zero. This calculation is parallelized again. Then
we go through the field with gradients (findEdgesVertical and findEdgesHorizontal) until we
find a point with sufficiently high gradient (according to the settings) and we start to search for a line.
For the given point we look to its neighbourhood whether it contains point with sufficient gradient (we
prefer vertical or horizontal direction) and if so we move to this point (in DFS manner). Then we search
neighbourhood for the new starting point and we continue until we cannot find next point with sufficiently
high gradient. Notice that since we go only to the right (or down), we cannot change direction of the line
and it will be one pixel thick. In addition we do not search only in neighbourhood but also 2 or 3 pixels far
thus we can rule out one pixel big noise. Finally we take all points found by this algorithm and using linear
regression we calculate the most probable position of the line. As you can see the time complexity of all
those operations is linear to the size of the image, except the image denoise. However this operation is
usually the fastest one (for reasonable values of intensity) because only simple operations are performed
in it. It is not edge detection responsibility, but if we use these edges for creating areas, we adjust them
to be strictly horizontal or vertical (we simply rotate them). As you can see this algorithm will have the
best results for the strictly horizontal or vertical edges, although can be used for detecting all lines (but
the improvement of the denoise filter is not used). That is the reason why we need aligned image.

4.4. Image aligning
For image aligning classes implementing the interface TransformDetector are responsible. The in-
terface provides methods for finding the most probable transformation to get the "original" image from
the image which is being processed. Currently there are two detectors which implements this interface.
One for the images from a scanner and another one for images from cameras. The second one is im-
plemented, however it is not used now. The reason why is explained later.

4.4.1. Aligning images from the scanner
We use a following observation — the only possible transformation is rotation. Thus if we find the angle of
this transformation we are finished. And this is exactly what the class RotationTransformDetector
does. This algorithm takes all edges detected in the image and calculates the most probable angle for
the rotation. We assume, that in the original image the most probable edges are horizontal or vertical.
We calculate average angle and remove an edge which differs most. Then we recalculate average angle
and we continue, until difference between upper and lower bound is small. And this is our resulting
angle. Our implementation does it in O(N log N) time. We sorts lines by angle. Then we can remove the
most diverging angle in the constant time because it will be the first or the last angle and thus removing
part needs O(N) time. The results are so good, that we remove possibility of manual angle correction.
We find out that automatic correction is always better than you can do by hand because forms are
very specific images. In addition we can scale down image twice and still obtain good results — which
enables us improve performance.

4.4.2. Aligning images from photos
In the second detector (GreatestRectangleTransformDetector) we in fact try to rule out with
arbitrary transformation. We try to approximate it by linear transformation. There are too many unknowns
thus we have to estimate size of the original image — but it does not have to be a problem, since you
have to measure it to get right calibration. This is necessary in any case because we do not have enough
information and one picture can be mapped to infinitely many images. Results were not terrible, but they
were not accurate enough, because we need less than one millimeter accuracy. In addition the results for
images from scanner are very bad — the detected transformation is not accurate enough and sometimes
it goes totally wrong. The main problem is to detect important point for detecting transformation. Even if
we detect them correctly (for almost 90% of forms we really did), we were not accurate enough — even
2 or 3 pixels (which means something like 1 mm) inaccuracy caused that the results were not sufficient.
In addition even a small deformation of the source image or deformation caused by camera or shaking
hands cannot be automatically detected from one image and thus cannot be corrected. That is way it is
in the most cases better to correct just rotation than use this more sophisticated algorithm.

OCR module

20

4.5. Classes for areas recognition
The main idea is following — take all edges, find rectangles which they produce, and finally try to rec-
ognize type of areas. In addition this classes are responsible for detecting dotted lines. We start with
searching rectangles created by edges.

4.5.1. Rectangle detection
For rectangle detection the interface RectangleDetector and its implementations are responsible.
One implementation provides the class SweepLineRectangleDetector. First we define what we are
looking for. We are searching for such rectangles that does not contain another rectangle and are big
enough. Such definition does not ensure that there will be only one result for one image and in such
case, it is impossible to decide which one is better. Thus we take first we find. We divide algorithm into
two steps. First we find intersections between edges. Then we use this intersections to determine areas.
During this analyze we also check whether the found area contains boxes for letters.

First we find intersections between edges in such a way, that for every horizontal edge we find a set of
vertical edges that intersect it. Searching for intersections is performed by drawRemoveConnection
and findNeighboursAndConnections. The searching itself is done in the following way: We cre-
ate bitmap of the same size as the original image. Then we "paint" horizontal edges into this bitmap
(first method). It also enables us to connect horizontal edges which overlap into one. Finally we take
vertical edges one by one and we find intersections (second method). The intersections are stored to
structures. There are only two such structures. For horizontal(HorizontalLine) and vertical edges
(VerticalLine). There are few technical problems, but they are not important (for example when the
corners of the rectangles are rounded). It is usually faster (linear in lines length) than trying to intersect
all pairs of edges (which has square time complexity to the number of edges).

With such precalculated data we can find areas using the method detect. We use some kind of sweep
line. We sort horizontal edges from the top to the bottom and from the left to the right. We take these
edges one by one and for each horizontal edge we do the following. We take all vertical edges intersect-
ing with this horizontal line from left to right. For each such line we try to take vertical edges left to this
one (we take them form right to left, so we try to create smaller rectangles first) until we find rectangle
which does not contain another rectangle or the horizontal line ends. If we find such rectangle, we sign
that there is the rectangle and we continue. When searching for the rectangles, we use intersections
stored by every vertical line. We also have to know, where is the bottom of the last rectangle for every
image point. We do this by one array which represents last rectangle position for every image column.
Although this seems to have O(N^4) (where N is the number of edges) time complexity, we cannot set
up any example for more than O(N^2). But we cannot prove that it cannot happen. However for all our
test data it runs very fast. We do some additional tests to recognize, that area consists of one letter
edits, for example the edit with those small lines inside it. We do it in the following way — we take all
lines intersecting the bottom line of just detected rectangle and convert their position to line of 1 and 0
where 1 means that there is a line, 0 there is not (in fact we do "bitmap" of the bottom line of the detected
rectangle). We perform fourrier transformation for this array and according to its results we find letter
boxes. It is done by SweepLineRectangleDetector::BoxCellDetector.

4.5.2. Dotted lines detection
The interface for dotted line detection is DotLineDetector and the only implementation is the class
CenterLinesDotLineDetector. This task was really an issue and unfortunately it is not solve at all.
For pictures with low resolution (very low) and very low quality, we can find false dotted edges because
of noise and on the other hand we can miss existing lines because we cannot precisely distinguish
between noise and dots. Fortunately this is not the case for images from scanner in reasonable DPI.
Our algorithm consists from two parts — in the first part we find candidates for dots and in the second
part we try to create lines from them.

In the first part we use a bitmap, which is created by edge detector. It tries to recognize areas where
could be dots. It is done using gradients and denoised images from previous calculations — thus we

OCR module

21

can improve speed significantly. Having those borders we use BFS to determines areas of single dots.
However this is the part, which caused malfunction and even if the detection of dots is quite sophisticated
it sucks for bad images. After this part we have list of DotCandidate. Before we create lines, we try
to filter out dots with non circle shapes and those which are too big or small. Lines are created from
dots in the following way. Every line candidate is represented by the class LineCandidate . For every
dot we try to add it to an existing line candidate and if we cannot do that because all lines are too far
from this point we create new line candidate. Finally we chose those line candidates, which are long
enough (in sense of number of dots in it).

4.5.3. Detection of types and groups of detected areas
Finally we want to find types and groups of the areas. The type is estimated by the class GroupType-
Detector . The main clue for determining type is the shape of the area. This heuristic has reasonable
results if connected with group detection. The first problem are areas which are rectangular and which
are not checkboxes. However then there are usually more than one in the group and we can recognize
them. Groups are done according to common bottom lines — again this heuristic has very good results.
The second problem is to recognize multiline areas. We try to estimate row height (we take the most
frequent height of the line edits) and using this we decide for every text area.

4.6. Gui
Every part of this algorithm needs its settings. Thus we created interface ToolGui. By implementing
this interface detector can provide its GUI which can be used by owner of this tool. Every widget can
ask for GUI of this tool and can use it. The responsibility of deleting this GUI is on the tool side.

4.7. Performance
We spent a lot of time by improving speed. Finally for image of a common size (which means about
3000x2500 points) we can do the analysis for reasonable settings in less than 5 seconds. The first thing
we did was parallelization. We used OpenMP which is very efficient but still it is not too hard to integrate
it to the existing source code and in addition it does not make it less readable. Another improvement is
done by writing algorithms which are cache oblivious. Also testing for practical data sometimes results
in using asymptotically worse algorithm because of its practical results. Finally we obtain very good
improvement by reusing memory for images and allocated images as one block — and thus minimize
the need of calling new which is expensive.

22

Chapter 5. GuiCommon module
GuiCommon is a library of classes which are used in multiple applications of the Form Tools project so
that they can be easily reused. The module contains various classes mostly gui oriented, like common
dialogs and widgets.

The GuiCommon module does not have its own namespace but the individual classes are part of the
namespace of the application that these were originally designed for.

5.1. API
The GuiCommon module also contains the private implementation of the Form Tools API interface
(which is independent of the Qt SDK). The private implementation is similar to the non-Qt interface with
standard types replaced by the Qt types.

The main class representing the logic of the API is the FormDialogPrivate class. This class contains
all the required objects to show, fill in, evaluate and print the data of a form document (even the QAppli-
cation instance if required). The document can be loaded by calling the method loadForm. It will create
all the required objects for this form (such as data evaluator) and initialize the GUI. The GUI can be
shown by calling exec. It also allows setting and getting the data filled into the opened form document
using the methods data and setData. The form dialog private also offers methods for showing a pre-
view of the current data and printing it to a printer or a PDF.

The data can be edited in the form (which is the same form as used in the Filler) with help of the class
FormDialogGui. This class contains the FormHolder instance that represents the form and handles
evaluation of the filled data along with tracking of the form field changes. The current evaluator is passed
by the setEvaluator method. The gui implementation also contains resources for previewing and
printing of the filled data.

5.2. Form holder
The FormHolder class is an implementation of a QWidget that creates and maintains the form cor-
responding to the given AppInputControlContainer. The created form allows the user to edit the
data of the associated form document in the corresponding editor widgets and display the optional com-
puted controls as static texts. The form holder also allows to set the validity and availability of each form
field. The FormHolder is an abstract class, the final child classes have to reimplement the reload-
Container method and fill the inner containers according to the given input container and its controls.
The child form holder classes are responsible for creating the jid-widget mapping which is then used
by the inherited implementation.

The form holder basically creates an interface above the form widgets. This interface corresponds to
the structure of the given input container and maps the jid of the form control to the corresponding form
widget and its value. The error handling uses also the jid-widget mapping. The values of the associated
form widgets can be accessed by methods value and setValue. The non input control values are
read only since they are computed by an evaluator. That means that the value method returns only
the input control values and for non input controls the null QVariant is returned. The data adapter also
contains methods for setting and getting the whole data at once and methods for setting the available
values for enumerable form controls. The validity of a control is displayed as an icon signalizing the
invalid state and containing the error message as its tool tip and status tip. The availability if a form
control is mapped to the enabled state of the corresponding form widget.

The form widgets are created according to the type of the associated input control in the method cre-
ateWidget. Because different widgets have different methods for getting and setting their values, the
special proxy object called FormHolderItem is created for each form widget. Using this proxy object
the value of every form widget can be accessed via a single interface. These holder items are created
in the createHolderItem method. For each used form widget there is a child implementation of the
FormHolderItem interface.

GuiCommon module

23

The form holder emits the fieldValueChanged signal every time the value of some widget in the
dialog is edited (e.g. textEdited signal of a QLineEdit). Changes of inner widgets are tracked in
the fieldChanged slot where the changed item is identified and the fieldValueChanged signal is
emitted.

The form holder also supports external undo/redo handling. If any of the widgets, which are supporting
undo/redo, requests an undo action, the request is further passed using the signal undoRequested if
the widget can not perform the undo itself. The undo operation on a form widget can be enforced using
the tryFieldUndo method (if the target widget supports undo). The same thing is with the redo action
with the exception that the redoRequested signal is emitted regardless of the availability of a redo in
the widget. The redo can the be enforced using tryFieldRedo method. This behavior is disabled by
default but can be enabled by calling the setUseExternalUndoRedo method.

Individual form widgets can be accessed using the widgetForJid and jidForWidget methods.

5.2.1. Table layout form holder
The TableLayoutFormHolder is a particular implementation of the FormHolder abstract class
which inserts all the form widgets into a QGridLayout according to the layout defined in the given
AppInputControlContainer. The tab focus order of the individual widgets in the inner containers
corresponds to the order of the associated controls in the input container. All the information necessary
to set up the grid layout (including the stretch factors of the individual columns) is stored in the given
input container and its controls.

The table form holder uses a new type of form widget QTextEdit which is used for multiline text
controls. All corresponding methods are modified according to this enhancement. Worth mentioning is
that the QTextEdit can not return whether it's enabled for undo so the table form holder has to track
this information by itself. The same problem is with capturing the end of the editing (this is simulated by
catching the focusOut event of the widget using he eventFilter method).

5.3. Database input helper classes
The database datastore of the form document requires some common functionality across both Form
Editor and Filler. The shared classes handle for example encoding and decoding of the database con-
nection strings and the generation of SQL commands which should be used to modify the datastore.

The encoding and decoding of the database connection strings is implemented in the DbInputHelper
static class. The connection information is represented by the ConnectionInfo class. The connection
string can be encoded using the encodeConnString static method and decoded using the decode-
ConnString static method.

The generation of SQL commands is implemented in the DbInputSqlGenerator class. This class cre-
ates SQL statements according to the given DbInputControlContainer instance. The commands
are created using text templates into which the passed arguments are filled in. This class is suitable
for batch generation of SQL commands. The SQL commands can be created using methods insert-
Command, updateCommand, deleteCommand and createTable.

5.4. Flow layout in a scroll area
Multiple pages on a screen are shown in a single scroll area to enable zooming and just one pair of
scrollbars for the whole viewport. The pages are arranged in a flow layout (from top to bottom in rows
flowing from left to right).

PaperScrollArea is a simple extension of a QScrollArea which is able to return its relative
scrollBarPositions() and restore the relative positions later within the viewportResized()
method. It also emits a signal when a wheel scroll event was caught in the scroll area. This enables
zooming pages by mouse on the whole viewport rather than only above the inner widgets.

GuiCommon module

24

FlowLayout is a basic implementation of layout which tries to position its items next to each other
within the available width, if the next item does not fit to the current row, a new row is started below
any of the above items. The available space needs to be explicitly set by the setAvailableSpace()
method. It supports horizontal alignment of items within the available space and margins. The main
method performing the layout is doLayout(). The sizeHint() returns the minimum space required
by the items for the given available width.

5.5. Snapping to lines
The class responsible for snapping is called Clipping. This class is somewhere between OCR and
the GuiCommon since it directly uses results from OCR analyze. This class basically takes a set of
horizontal and vertical edges and then it quickly finds for the given point the closest point of any detected
line and in the horizontal and vertical direction (clips). And that is what we need for snapping. In
addition it supports merging of the existing clipping structure with the newly obtained one (mergeWith).

The main structure that contains the clipping is quite simple. We realized that it is enough to store for
every line of the image the sorted list of the coordinates representing the lines they intersect. And the
very same we can do for columns. Thus for the given point's coordinates we can find the closest lines
in the horizontal and vertical direction in at most log N time (where N is the width or the height of the
image). Notice that usually it will be much faster, because number of edges in the line is rather small.
When you want to snap a line you use method clipLine which finds the closest line for the whole
line — it is done per every point of line thus obtaining N log N time complexity in the worst case —
which is fast enough.

Small problem is a calibration. All calculations are performed in image coordinates and you have to take
care about that.

Finally we want to write something about merging two clippings together. Imagine that you made addi-
tional detection, thus you obtain new clipping for some area and you want to replace this area in the
original clipping. This is done very simply. We take every row contained in the new clipping and we
remove those indexes which correspond to the new clipping. Then we insert newly obtained lines to this
rows and we are finished. We can do exactly the same form columns.

25

Chapter 6. Form Editor
Form Editor is the most important and the most extended part of the Form Tools project. It allows user
to create digital forms from scans or images of paper forms and also to specify, how the data filled in the
digital form should be printed into the original paper form. Besides, Form Editor allows to define data
storage for the data filled in the digital form.

6.1. Overall architecture
Form Editor is a Qt application with a main window represented by the class FormToolsEditorWin-
dow. It allows to edit multiple files at one time. Each file is edited in one subwindow (which is in fact
MDI window). Each of the opened documents is represented by the EditorsWidget class instance
which contains the corresponindg instance of the FormDocument class from Lib module. Each part
of the edited document (paper layout, electronic layout, storage) is then edited in its own editor which
is child class of the FormEditor (e.g. PaperFormEditor, AppInputFormEditor etc.). The Edi-
torsWidget instance is responsible for creating and connecting these individual editors as well as
redirecting global actions (from the main window) to the specific form editor.

Form Editor consists of several modules:

• Data models

• Paper form editor

• Image analyzer

• Electronic form and datastore editors

• Toolbar action management

• Error handling

• Property handling

• Script editor

• Script debugger

All these modules (except the image analyzer which is described in the Chapter 4, OCR module) will
be described in more detail in the following sections.

All classes in this module are enclosed in the FTGui namespace.

6.2. Data models
All the data of a form are stored in a library object FormDocument. Form Editor provides ways of dis-
playing contents of this complex structure to the user and also allows the user to change the document.
Most parts of Form Editor are based upon the Qt model/view framework, where the models are proxies
above specific parts of the form document. All data which can be edited in Form Editor are stored in
some data model (defined by children of the QAbstractItemModel class). Data stored in models can
be displayed to the user and edited via views (defined by subclasses of the QAbstractItemView
class). This allows loose coupling between storing and displaying data. Moreover, the same data model
can be displayed by multiple views simultaneously. Using model/view architecture also makes easier
the support of undo in the application.

The only exception to this architecture is the definition of the layout of the paper form, where we need
to display many items (areas) at once in a graphical way. For this part of Form Editor, the Qt Graphics
View framework is used.

Form Editor

26

6.2.1. Basic overview
The data models are used to create an adapter object over the FormDocument class instance (which
holds the actual data) via the standard Qt interface Qt::AbstractItemModel from the Qt Model/View
framework. All data models are based on the TreeModel class which is the basic implementation of the
QAbstractItemModel interface. This model provides mapping of the indexes to objects (TreeItem
and subclasses), which enables different types of items to coexist in a simple model. The model is a tree,
allowing each of its items to have subitems.

The TreeModel also provides functions for dynamic changes of the model (as insertRows(), re-
moveRows(), moveRows()) and an interface for easier implementation of drag and drop (mimeEn-
codeItems(), mimeDecodeAll()). The model supports saving all the actions performed to a QUn-
doStack which makes the incorporation of undo and redo into the application relatively easy since
almost all changes of data are passed through some child class of this model. The model also works
fine without the undo stack.

Subclasses of the TreeItem class have to implement access to the actual model data via data()
and setData() methods. All subclasses of the TreeItem class store a pointer to a document con-
trol (eg. AppInputControl for AppInputModelItem) and allow access to its properties via the
Qt::AbstractItemModel interface. They also provide additional functionality connected to individual
cells of the model (flags(), headerData() etc.)

The model items also handle the external changes in their associated controls and inform the views
displaying the model's contents about the changes being made by emiting the dataChanged() signal.

6.2.2. Control model
This model is implemented in ControlModel class (which is the child class of TreeModel) with Con-
trolItem or ControlGroupItem classes for items. The model allows to acces the FormControl
and FormControlGroup hierarchy of the FormDocument instance. This model uses the hierarchy of
items as stored in form document. The model items do not manage their child items themselves but
they ensure the undo/redo functionality for the underlying control hierarchy.

The model items store the FormControl pointer (for ControlItem) or the FormControlGroup point-
er (for ControlGroupItem). For the ControlGroupItem model item class the list of child items and
methods for their management are provided. The child item manipulation is performed directly on the
associated form control group. In the ControlItem item class the methods concerning child items
manipulation are empty.

The responsibility of the model items is to track changes of their associated controls and their errors.
The error changes are handled in the errorsChanged method and can lead to the dataChanged
signal if the state of the stored control has changed.

6.2.3. Input models
Input models allow to modify the controls of the given InputControlContainer. All the input mod-
els are flat (compared to the ControlModel which is hierarchical). The common funtionality of input
models is implemented in the InputModel class (which is the child class of TreeModel) with Input-
ModelItem class for items.

The basic extension of the TreeModel is the drag and drop handling. Each input model supports three
different mime types for dragging and droping its items. The first is the mime type for internal move
of items which is defined in the TreeModel class. Both drag and drop actions are enabled for this
mime type and the implementation is similar to the TreeModel. The second supported mime type is
the InsertMimeType which is used to create new input controls for the form controls specified in the
encoded data. This mime type is supported only for drop action. The third mime type MoveMimeType is
encoded along with the InsertMimeType and serves to determine the origin of the drag action. This

Form Editor

27

has to be done because dragging data which have the InsertMimeType between documents is not
allowed (each input control is bound to one particular form control of the same document).

App input model
This model allows to acces and modify the associated AppInputContainer instance and its controls.
The properties of the input controls are accessed through model items (AppInputModelItem) and
their methods. The properties of the container are accessible by specific methods (layout(), set-
Layout()). The model also allows extended handling of undo and redo for its actions by providing ad-
ditional methods setMultipleData(), setMultipleDataCommand() and signal multipleDat-
aChanged() to ease the operations in the associated designer view as these operations require more
functionality than the common interface offers (this will be discussed later in this chapter).

Csv and database input models
These models (implemented by CsvInputModel and DbInputModel classes) manage access to the
associated InputControlContainer class isntance. They only extend the access to the stored input
control data according to the particular type of the model via overriding appropriate methods in the model
item classes (CsvInputModelItem and DbInputModelItem).

Input filter model
The InputFilterModel allows access only to those controls from the given ControlContainer
which can be used to create new input controls in the given InputControlContainer. This model
is readonly and flat (compared to the control container which is hierarchical) with just one column. The
structure of the model is rebuilt when the source control container or the source input control container
has changed. The input filter model is a standalone class and doesn't use any of the functionality pro-
vided by previously mentioned model classes.

FormControl instances are availible for new input controls only if they don't have any corresponding
input control in current input container (acording to the form control pointer). The model distinguishes
two types of form controls: mandatory and optional. Mandatory form controls are the controls which
have the FTib::FormControl::isInput() set to true, the other ones are optional. The types are
distinguished using model roles affecting the items' appearance (eg. Qt::DecorationRole).

6.3. Paper form editor
For editing of the paper form layout of the form document the paper form editor module is used. It con-
sists of two parts. The first part is the editor of the structure of the form controls, groups and form areas
and their properties. This part is based on the Qt model/view framework. Form cotnrols and groups are
displayed and edited using the ControlModel class along with the ControlView. For editing of the
form control and form area properties the classes ControlPropertiesModel and ControlProp-
ertiesView are used.

The second part is the graphics designer of the paper form layout. For this part of Form Editor, the Qt
Graphics View framework is used. There is a QGraphicsScene containing the information about the
layout of the graphical items and a subclass of the standard QGraphicsView called PaperGraph-
icsView which shows the scene's contents to the user and handles the modifications of the items. The
rest of this chapter will be dedicated to this paper graphic view class.

6.3.1. Paper graphics view overview
Each page in a document (FormPage) is represented by the PaperPage class in Form Editor. Each
of the areas on the page is represented by FormAreaItem, all the areas of the page along with its
background are placed on the page's scene(). The scene is displayed to the user via the Paper-
GraphicsView, which handles moving, copying, converting, removing of the areas and is responsible
for saving all the actions into an undo stack (it can also be used without it).

Form Editor

28

6.3.2. Form area item
FormAreaItem is a QGraphicsItem representing single FormArea on a graphics scene. Method
paint(), used for displaying the contents of the graphics item, draws a frame around the area's bound-
ing rectangle and then lets the area to paint itself (the static areas' contents are painted directly even
while designing the paper layout). Item's borders are always painted with the same line width in view
pixels, this effect is accomplished by associating ViewInfo class with the item. This info class knows
the current scale of the view. Info class directly associated with the item disables its posibility to be
shown by multiple graphics views, but we do not need this (each area can only be on one page).

The form area item is also responsible for resizing itself. It draws resize corners while being hovered and
handles all the mouse events during the resizing. While being resized, the item uses detected clipping
lines (it uses the info to access the view's clipLine() method) and snaps the corner being resized
to the nearest detected line.

The boundingRect() method returns the whole rectangle occupied by the item (along with its resize
corners and possibly overflowing contents of a static paper area), on the other hand the shape()
method returns only the rectangular frame around the area (without the overflowed contents). The item's
zValue() is set by the GraphicsScene::setItemLayer() method according to the area type, the
current application tool and the size of the area (the smaller are positioned above the bigger, so that
even the smallest one can be selected in case of overlapping areas).

6.3.3. Paper graphics view
This view graphically presents the contents of a single page (its scene, to be precise) to the user. It is
based on the GraphicsView class from the GuiCommon package which will be also described in this
section. The base view implemetation is used whenever some areas (including the detected ones) need
to be shown. All the mouse events are processed by the base view which then calls virtual functions that
have simple, usually dummy implementation. These are overriden in the paper view, which has more
information about the document, it is aware of controls etc.

The paper view is aware of the fact, that there might be more views showing different pages of one
document at the same time. All these views need to be zoomed to the same level, the selection needs to
be synchronized etc. The performZoom() method is called when the view finds out that the user wants
to zoom it in (by scrolling the wheel while holding CTRL), the zoom() actually performs the zoom of
the single view. The addItem() and convertItem() create new form controls, selectOneItem()
and areaGroup() are used for handling the selection.

Moving (and copying) the items on the view is implemented by drag&drop, because it is impossible to
detect end of an internal item move. Another reason for this was a need for cooperation of more scenes
within one document (moving areas from one page to another). The "application/ft-areas-se-
lection" mime type is used. Moving the areas is simulated by using the pixmap with all the areas
as the drag pixmap and hiding the areas. The areas are set visible (and placed to new positions) after
they are dropped.

Paper view also draws its context menu with cursor position (and selection) sensitive actions. These
are usually not handled by the view itself but are rather forwarded to the PaperFormEditor, which
can operate with form controls better.

When moving, inserting or copying items it is useful to allow the scroll area containing the view to be
scrolled. The method scrollTo() is repeatably called when the user is dragging an item and the
cursor position should be visible within the view. The base class just delegates the call to the standard
QGraphicsView's function ensureVisible(), while the paper graphics view uses the form editor to
scroll itself (since it does not have its own scrollbars).

Both the parent and the child view also support unmovable items which are always drawn relatively to
the visible region of the view. Those items are used as rulers in calibration etc. The only thing you have
to do to obtain unmovable item is to register your item via method addUnmovableItem. Now you can

Form Editor

29

set item pos only by method setUnmovableItemPos. This pos is relative to visible part of the view.
You can also set, that only one direction will be related to the view and another will be not if you set
unmovableOrientations. Finally it is your responsibility to unregister item by removeUnmovableItem.
The core for this items is method justifyUnmovableItems. It has to be called whenever the visible
part of the scene changed (notice that it contains not only geometry changes to view but also moving
scene).

6.3.4. Synchronizing selection
The selection on the whole PaperFormEditor is synchronized by the PaperSelectionModel. It
ensures, that each of the selected areas' control is selected within the ControlView, all the selected
controls in the ControlView are present in the ControlPropertiesModel and that the selection of
areas on the pages, in the ControlPropertiesView and the set of areas in the AreaProperties-
Model are the same.

The class uses a simple internal locking by lockSelection(). While it is locked, no signals are pro-
cessed until the unlockSelection() is called. Most of the selections are not updated immediately,
the changes are rather kept in a buffer and the changes take place after a timer finishes. This prevents
the synchronization from overwhelming the CPU.

6.4. Electronic form and datastore editors
The editors for the individual electronic forms and datastores are also based on the model/view archi-
tecture. Each editor is represented by the child class of the InputFormEditor class. The editor allows
modification of the given InputControlContainer using graphical designers or property editors (see
Section 6.7, “Property handling”). The individual editors are very simmilar so the parent class which
contains almost all the required functionality. The particular editors should just provide the main designer
view, the target input container and the main data model. Therefore the addition of another input editor
type is very simple.

Each editor consinsts of four parts. The main part is the designer of the container controls. It allows
arranging of the target controls in a container with respect to the type of the container. The InputModel
child classes are used as models for this designer. As for views, the standard Qt view classes are used.
However, there is one custom designer view for arranging the application input form called Electronics
form designer which will be described in more detail in the following subsection.

The second part is the source list of the avalible form controls that can be used to create a new input
control. For this the InputSourceModel and InputSourceView are used.

The third part is the list of all created input controls along with some basic properties and associated
form control indentifiers. This is implemented by the InputModel child classes for model and standard
Qt view classes.

The last part is the editor of properties of the current container and the selected input control. For this
the classes PropertiesModel and PropertyItemDelegate are used.

6.4.1. Electronic form designer
The implementation of this designer is split into two parts represented by AppInputViewTableHolder
and AppInputTableView. The first one holds the layout of the table, which means that it remembers
the merged cells, etc. The latter one is responsible for interaction with the user, undo and also creating
paper-like layout. We will start with first class which is the core class for table manipulations.

Table manipulation
As we proposed in the previous paragraph, the class which is responsible for table manipulations is Ap-
pInputViewTableHolder. The class itself stores the information about cells in Cell objects. How-
ever its interface enables the caller to operato on areas consisting of merged cells. Such interface is

Form Editor

30

more comfortable to work with and hides the manipulation with the cells which might be potential source
of errors. The main invariant which holds during all the operations is that all areas (merged cells) need
to be rectangular. Although this class provides a powerful interface, it is caller's responsibility to ensure
that none of the operations break this condition. Later, we will show a way how to check whether a se-
quence of operations is correct in this sense.

Implementation details

As mentioned before, we internaly store a table of cells. Every cell (class Cell) remembers whether its'
bottom and right border is a break (methods isRight, isBottom, setRight and setBottom) and
the proxy widget (QProxyWidget) placed in this cell if any. The situation with the widgets is a little bit
harder — for every merged area, the widget is stored in an arbitrary cell of the area. The main problem
is, that the cell is not the owner of the widget and it cannot delete it — that means that before deleting
associated proxy widget you have to set another parent to it. Another problem is when copying this
class — it would not be clear who the owner of the proxy widget is and thus nobody would deallocate
it. However we provide quite a nice solution to this problem.

We realized that usually we do not need the copy of proxy widgets — it is enough to copy just the layout
and a sign that any area is not empty. This is done by method dummyCopyFrom which copies information
about borders between cells and instead of copying original proxy widget it stores dummyWidget to it.
This is enough for all the the cases where we need to copy the table. If we want to copy geometry from
this table we do it by calling the applyDummyGeometryTo function. Well, the good question is, why
do we need to copy the table? The answer is, that it is useful for checking whether our operation is
correct or not. We do a dummy copy, try to do the proposed operation and finally we check whether the
newly obtained table is correct (using e.g. method isCellAreaRectangular). If so we perform the
proposed operation on the original table. Notice that we do not need original proxy widgets for layout
operation, it is enough to know, that there should be one.

However if we need a copy of the part of the table (e.g. when moving some part of the table to another
place) we can do it. But we can do it only inside the table. This is done by functions moveCellsRect-
ToBuffer and moveCellsRectFromBuffer.

Caller interface

The work with table is encapsulated and is done via methods operating on areas, like a mergeArea or
clearArea. Notice that every merged area is uniquely defined by an arbitrary cell inside it and thus
all such function work either with coordinates of one such cell or by rectangle which bounds some cells
inside the table. The interface also offers functions for inserting and removing rows and columns. You
should be a little careful when using those for removing rows and columns (removeCol, removeCol
etc.). Before you remove the cells you should ensure, that all the widgets that could disappear by re-
moving these columns or rows are deleted before. This can be ensured by calling removeAreaWid-
gets . On the other hand removing and also inserting the row or column does not break the invariant of
rectangularity and ensures you that if you insert in the middle of a merged area, this area will not be split.

Table view
There is nothing interesting about the class AppInputTableView. Just tons of code which can be
easily understood from doxygen comments. The class handles both the undo commands, the interac-
tion with users, writing the changes to the model (to ensure that other view can notice the changes),
and finally it can do an automatic layout which will be described later. The class itself is based on the
QGraphicsView, and it is responsible for both creating our own layout designer (with all the functionality)
and displaying all the widgets within it. However, the price is big. We have to handle all the painting,
the user interaction and the undo commands ourselves. On the other hand we have absolute freedom
in the layout and the result is quite good.

Automatic paper-like layout
As we mentioned before, the AppInputTableView class is able to layout the controls so that these
look similar to the positions of their areas on the paper form. This is done in the createPaperLike-

Form Editor

31

Layout method. The controls can be spread over cells to occupy more rows and columns (but only in
a rectangular area), all the rows have the same height, and we want to create the layout using the small-
est possible number of columns. To make it easier we consider only the first area from every control.

Now we can assume that we have a bounding rectangle of every control so we can try to split them
into rows. First we start with estimating the row height (estimatedRowHeight). We do it simply by
bucketing and take the height which is the most frequent. Then we start to divide the controls into rows
using sweepline (distributeControlsIntoRows). Notice that it is independent to the distribution of
to the columns. Now we take the first hypothetic row from the top of the page and we look whether there
is any control which intersects with this row. If there is not such control we move to another row. If so
we take all of them and for each control which has no intersection with other rows we adjust the top of
the row. Then we take again all the controls and we adjust the bottom of the row. Then we go through
all the controls third time and if they intersect with this row we add them to this row (which means either
that they start in this row or they should be expanded to this row if these are multiline.

Now we can continue by distributing the controls into columns (distributeControlsIntoCols). At
first we build an oriented graph from the controls in such a way that if control A is in the same row(s)
as B and if the left border of A is smaller than left border of the B then there will be edge from the
A to B. Notice that such a graph cannot contain cycles so we can do topological sorting. Now in this
sorted graph we find the longest path — the length of this path will be the number of the columns in
the table. The only task that remains is spreading the controls horizontally if possible. It is done in the
spreadColumns method. For each control in the graph we take all its children and find the maximum
from their columns in the rows and remaining columns to the right minus the longest way from the control
to a leaf. Using this algorithm we can spread this control.

Finally we just split every column to two because we need to add a label to each widget and we are
finished.

6.5. Toolbar action management
Form Editor has many states, not all the actions on the toolbar apply to all the states, thus there is
a need to enable or disable the actions and their targets. Whenever an editor specific action is triggered
it is handled by the FormToolsEditorWindow's performEditorAction() method which calls the
current FormEditor's performAction() method. This method takes two parameters, the action type
and the parameter parameter of the action. Each of the form editors then defines a set of supported
action types, when the current form editor changes, the actions associated to the new editor's supported
action types are enabled, the other ones are disabled. There is a singleton class handling action states
of the main application window called MainWindowState.

There are two exceptions to this rule, the first one is the undo actions. The MainWindowState connects
the undo/redo actions directly to the undo stack of the current form editor. The second exception is
the bunch of copy/paste/cut/delete actions which are not targeted to the whole form editor but always
refer to the focusedWidget(). The focused widget might be of any type, to handle this we define the
copyPasteActions Q_PROPERTY in all the widgets that support these actions, reading it returns the
supported actions and writing to it performs the given action.

There are also actions which do not make sense to be triggered when there is no document or when
the current document is in error state, these are also handled by the MainWindowState object.

6.6. Error handling
Form Editor tries to handle all the errors in a soft way, allowing to edit the document with errors (even
to save a document with errors) and to allow delayed solution of those errors. To be able to do that, the
opened document has its own error handling logic (see chapter Section 2.2.3, “Form document”). The
role of Form Editor is to track and display these errors.

Tracking of the errors is done in two ways. Firstly, all model items track errors of their form controls
and display them using model roles (Qt::DecorationRole for example). The first solution of tracking

Form Editor

32

errors is implemented in all input models by catching the signal changed() of the associated Input-
Control instances. In the ControlModel, the changes of errors are passed from outside of the model
by calling errorsChanged() on the target model item.

The second way of tracking errors in Form Editor is the overall list of all errors in the FormDocument
instance which is accessible by method errors and can be modified or further inspected by specific
methods. The changes of errors in the document are announced by the errorsChanged signal. The
error changes are then further propagated using the errorsChanged signal of the EditorsWidget
class. The list of errors is then displayed in the bottom right corner of Form Editor using the ErrorsWid-
get class. The owner of the errors widget (which is the single FormToolsEditorWindow instance)
forwards all error changes by connecting the slot errorsChanged of the errors widget to the previously
mentioned signal of the editors widget.

Form Editor allows user to highlight the item with errors by clicking on the appropriate link in the errors
widget. This is implemented by connecting the signal highlightItem of the errors widget to the same-
named slot of the FormToolsEditorWindow which passes the call to the currently active editors wid-
get. The editors widget then finds the target editor which contains the item to be highlighted and forwards
the call. Form Editor then highlights the item according to its type (the target editor finds index of the
item in the current model and enforces selection of this index in all the associated selection models).
All methods in this call chain are named highlightItem.

6.7. Property handling
Since all the elements of the form document have their properties stored in the FormProperty class
instances and implement the FormPropertyContainer interface to allow uniform access, Form Ed-
itor implements unified way of displaying and editing these properties in so called property editors. The
property editors are based on the Qt model/view framework. For this purpose the PropertiesMod-
el class is implemented which allows to edit these properties in common Qt views. There are some
specialized child model classes of the PropertiesModel and some specialized views since some
controls require specific handling of their properties.

6.7.1. Properties model
The PropertiesModel class implements the standard Qt item model interface to allow editing of
form item properties in common Qt views. The model tracks property changes of the selected form
controls and allows access to their values via the QAbstractItemModel interface. All changes of
the properties are undoable. The model is based on the TreeModel with the RootPropertyItem
class and BasePropertyItem classes for model items (the second one is further extended by child
classes). The model is a single level tree with specific root item to which all the methods of the model are
delegated. The subclasses of the BasePropertyItem are in the leaves of the tree and allow access
to the associated properties.

Each properties model is only available for editing (and displaying) a specific set of properties, which
needs to be expicitly set by the setProperties method before any other methods are called. Some of
the properties can also be set as read-only, which is achieved by passing the identifiers of those prop-
erties to the setReadOnlyProperties method of the model. After the model is given the supported
properties, it creates a BasePropertyItem for each of them. The model allows to display and edit
properties of multiple controls at once. The current set of controls is set by the setItems call. Only the
properties shared by all the current controls are displayed (the other properties are hidden) and if the
values of some property differ then the list of availible values is displayed in the model.

To increase the usability of the property editor based on this model in the situations where the set of the
selected controls changes frequently, there is an option to set the timeout for refreshing of the model.
This basically delays the visibility of the item changes when the selected item set is modified by ther
user. The timer is set every time a property change of some selected item occurs. The refresh timeout
length is accessible via refreshInterval and setRefreshInterval. The timer can be cancelled
by setting its value to 0. The refresh of the current property values can be enforced by calling refresh.

Form Editor

33

Property model items
Each property of the selected comtrol is edited in one row of the model via the BasePropertyItem item
class and its subclasses. The base property item contains the implementation of data accessor methods
data and setData for simple properties (eg bool, numeric properties, QString based properties or
enumerations of strings). For more complex properties there is a ExtenderPropertyItem class which
allows the property to have children items. It is inherited by two subclasses, the RectPropertyItem
and FontPropertyItem, both defining simple subproperties (like width and height or point size).

6.7.2. Property view and item delegate
To display the contents of the properties model, the PropertiesView class is used along with the
PropertyItemDelegate as a delegate class (using delegates is a standard way of extending a view's
editing capabilities, they allow customization of drawing and editing of particular model indexes).

The properties view is based on the standard QTreeView view and adds the ability to preserve ex-
panded items when they are removed and inserted back again (occurs often in the properties model
as the items are selected and deselected frequently). This behavior can be suppressed by setting the
setPreserveExpanded to false.

The PropertyItemDelegate is a standard implementation of the QStyledItemDelegate interface.
It allows to edit the properties in the properties model in the custom widget PropertyEditor, which
adds a dropdown list with all the distinct values of current items and an icon for editing the property
value in extended editor if needed (e.g. a program). The property editor creates an inner widget for
edditing the value depending on the type of the edited property. The distinct values of the property can
be displayed using showHints method. The property editor allows to open an external editor for editing
the associated property using the dedicated methods openProgramEditor, openPatternEditor,
openTextEditor and openFontEditor. The last importatnt feature of the property editor is the fo-
cusOut event handling. By default, the editation of an item is commited when another item in the view
recieves focus or ENTER is pressed. This leads to ignoring the changes when the save action was cho-
sen from the menu or the editor looses focus. Thus the editor handles the focusOut of its children (the
real editor) by installing an event filter to them and processing their events in the eventFilter method.

6.7.3. Custom property models and views
Some items of the document require special handling of their properties (eg. PaperArea or FormCon-
trol) and therefore a specialized child classes of the previously mentioned property model and view
are implemented.

Area properties model
The AreaPropertiesModel extends the behaviour of the PropertiesModel in such a way,
that setting the data of an area also saves their selection and restores it when the command
is undone. This is implemented by overriding the newSetDataCommand method and adding
a PaperSelectionModel::SaveSelectionCommand as a parent command of the default set data
for the properties.

Control properties model
The ControlPropertiesModel is a model class for both editing the properties of the selected Form-
Controls and showing the list of areas of those controls. It is based on the properties model and han-
dles the lines with the areas itself (opposed to the other models it does not use items to represent the
areas). The areas can be dragged from one control to another and thus change the parent controls,
this is also handled in the model.

The list of current controls can be modified using the setControls and changeControls methods.
Dragging the areas is implemented using the Qt drag and drop mechanism in the mimeEncode and

Form Editor

34

mimeDecodeAll methods. The model allows to undo the move of the areas. This is done by using
the ControlPropertiesModel::MoveAreaCommand undo command class. While undoing the data
changes, the previous selection is restored and the properties model looks the same as before the
action. The selection model used to store the current selection before making the requested change in
the model data is set by the setSelectionModel method.

6.8. Script Editor
There is a JavaScriptEditor for editation of scripts to make writing the controls' code more com-
fortable and easy. The editor is based on the QTextEdit class which is usable for rich-text editing. It
provides features like syntax highlighting, word completion and automatic indentation.

JavaScriptHighlighter class is used as a highlighter for the script editor. It is based on the QSyn-
taxHighlighter class, thus it highlights text based on the matched regular expressions (it does not
have a parser). It uses a list of HighlightingRule objects (each of them associates a pattern with
a format) which are applied in predefined order to the input text.

JavaScriptModel object can be associated with the script editor. Then the editor uses the model for
word completion of the currentWord(). The model has a predefined set of javascript keywords and
a pointer to a ControlModel containing the hierarchy of the form controls and groups. It maps this
structure to the script (separating the hierarchical names by '.' character) and adds function names (as
given by the controls) as the leaves of the model.

The editor handles each key separetely in keyEvent(). According to the key and the it decides whether
to just type the key, show the completer (where the JavaScriptModel is loaded) or whether some more
characters need to be inserted in case of automatical indentation. The autocompletion is a simple heuris-
tic where indentation is increased after opening curly bracket { and it persists until next closing curly
bracket }. There are also single line indented blocks after line ending on a closing parenthesis) or an
else command.

The editor emits signal positionChanged() whenever the position of the cursor within the document
changes and lineCountChanged() when the number of lines has changed. This allows other widgets
to display line numbering. The editor itself can show the cursor position on a label if the label was
previously set by the setLabel() call and a friend class JavaScriptVerifyButton can be used to
verify the code within the editor. The button after being clicked shows the verification result and in case
of an error sets the cursor position to the error position.

6.9. Script Debugger
To make writing of control programs more comfortable and clear, Form Editor offers a simple debugger
form these programs. The main feature of the debugger is that the user can see all the programs of all
defined widgets in one place. The debugger consists of two parts. The first one is the script editor for
the merged program code. The second part is the designed application input form (this form is hidden
when no application input is defined). The debugger is implemented by the class ScriptDebugger.

The debugger uses the methods program and setProgram of the current form document to extract all
programs from all controls to a single string or store it back from a given string. The code is than loaded
into a DialogEvaluator instance which evaluates the data filled in the application input form.

The application form is represented by the class FormHolder (the same class is used also in Filler).
The form holder class creates editor widgets according to their definition in the given AppInputCon-
trolContainer. The programs of form controls have to be executed each time when some of their
input values changes. Therefore the evaluator is called every time a value of a form field changes.
The fieldValueChanged signal of the form holder is connected to the valueChanged slot of the
debugger which forwards the calls to the dialog evaluator. The debugger has its own event handler
class ScriptDebuggerEventHandler for handling evaluator events which forwards all calls to the
form holder instance.

Form Editor

35

The field values filled in by user are accessible via methods data and setData. This allows the owner
of the script debugger to restore the previously filled values when de debugger is opened.

The debugger also allows print preview of the filled values using the class PreviewDialog. The input
data for the preview dialog is computed from input form field values using ModelEvaluator.

36

Chapter 7. Filler
Filler is a simple Qt application that allows user to fill in the data of the opened Form Tools project and
store it into the defined data storage or print it (either to a printer or into a file). 1

7.1. Overall architecture
Filler is based on the Qt model/view architecture. The main reason is that this architecture allows an
uniform access to the edited data from standard (possibly multiple) Qt views. This is exactly the case
of Filler where the data are edited using two views, a table view and a special view representing the
digitalized form (this view is based on the FormHolder class). It also allows centralized evaluation of
user defined programs.

At the bottom of the architecture there is a data storage allowing loading and saving of the stored data.
The data storage is used by the central data model (one data storage at one time, but can be switched).
The model uses evaluation of programs and data conversion provided by classes from the Lib module.
The loaded and evaluated data is than displayed in the data views according to the user definition of
the digital form.

Filler is an Qt based application with a main window. The main window is designed using the Qt Designer
and the logic is implemented in the class Filler. This class contains all child widgets and objects
forming the application and handles signals of the designed UI. It also connects the main modules and
is responsible for loading and saving the project files and data.

Main modules are the following:

• Data storage classes.

• Classes for evaluating and converting the data.

• Data model class.

• Classes form viewing the data.

All classes in this module are in the FTFiller namespace.

7.2. Data storage
The base of the application architecture is the data storage. It allows to load and save data of the opened
Form Tools project. The basic interface of a data storage is defined in the class DataAdapter. Each
data adapter has a InputControlContainer pointer to get the detailed format of the stored data.

The data in Filler are viewed as a list of records (each item of a record contains value of the associated
form control, the mapping of controls to record items is defined in the associated input container). There-
fore the interface defines methods for modifying these records such as selectRow, updateRow, in-
sertRow or removeRow. It also defines methods for single record item manipulation where the record
items are identified by the jid of the associated form control. The methods commit and loadData
should save and load the stored data.

Currently there are supported two types of data storage, the CSV data storage and database data
storage, but the application can be easily extended by implementing the DataAdapter interface.

7.2.1. CSV data adapter
The CsvDataAdapter class implements the defined DataAdapter interface to allow storing the form
document data into a CSV file. The format of the CSV file to be saved or loaded is defined in the given
CsvInputControlContainer including delimiter, quote or encoding.

1 The project contains path to a form definition file (.ftd), the selected application input and definition of data storages.

Filler

37

All the data of the CSV adapter are stored in the internal cache. So when the file is loaded, the CSV
records are parsed according to the defined file format and stored into memory. On commit the cache
is flushed into the given file.

7.2.2. Database data adapter
The DbDataAdapter class implements the defined DataAdapter interface to allow storing the form
document data into a SQL database. It uses the QtSql framework to access the database. All the
information needed to connect to the target database is taken from the project file and from the given
DbInputControlContainer.

Each record of the data is represented by a single row in the database. Except the database columns
for individual form controls, there is a primary key column (its name is defined in the input container).
The data adapter maintains the mapping from the primary key to the index of the record in internal
storage and vice versa (all the loaded and created data are stored in the memory of the data adapter). All
the database columns representing the form document data should have type string (integer based
values can have specifically typed columns) and the primary key is expected to have type integer
with autoincrement.

The requested changes are performed on the internally stored data. Using the commit method the SQL
commands will be generated and executed in a transaction (the commands will update the database
according to the changes made in the program). To allow that, the data adapter stores the set of inserted,
removed and updated data records. For generation of the SQL commands the DbInputSqlGenerator
class is used.

The adapter tries to create the associated database table on load. If the operation fails, it is marked as
error but the adapter continues in loading. This can be adjusted using the method setCreateTable.

7.3. Data evaluation and conversion
Filler uses evaluation of javascript scripts to validate and compute document data. It also allows to store
the data in one format (eg. date format strings, bool value names etc.) and edit it in another format.
Main classes for both of these operations are defined in the shared Lib module (see Section 2.3.2,
“Program evaluation” and the section called “Data conversions”) but Filler has to define its own helper
and adapter classes.

The data evaluation and conversion is performed in the DataModel class (will be described later in this
chapter). This section contains helper classes of Filler that are used to do this.

7.3.1. Data flag map
The DataFlagMap class represents a matrix of flags. The individual flags can be accessed by their row
and column position. The class offers methods to modify these flags and to change the size of the flag
matrix. The flag map is used to store flags of the loaded data which is managed by the DataModel class.

Filler uses two basic flag types. The enabled flag and the valid flag. The map contains specific
methods for handling these flags. It also contains methods for locking as it is accessed from multiple
threads.

7.3.2. Data validator
The DataValidator class allows to run the evaluation of data rows using a DialogEvaluator in
a dedicated thread, thus the user can still interact with the application. It receives the pointer to an
evaluator and pointer to an event handler and starts a thread which repeatedly calls the evaluator.

The validator contains methods for starting and stopping the background evaluation or for adding or
removing the list of rows to be evaluated. It provides methods for tracking the progress of the validation
using signals rowValidated and progress.

Filler

38

The evaluation thread is implemented by the class DataValidator::ComputeValidityWorker
which invokes the evaluator in its run method.

7.3.3. Input convertor holder
The InputConvertorHolder class allows to convert the value of a control from the format used in the
datastore to the format used in the form and vice versa. Given the input container corresponding to the
form used for editing and the input container corresponding to the adapter, the convertor holder allows
to convert the given data back and forth from the format used in the form to the format used in the data
adapter. In fact, the convertor holder is just an adapter over two instances of the InputConvertor
class.

The convertor holder has to handle the situations when the conversion to the format of the form fails.
The holder has to return different 'error' value for string controls than for other types of controls since the
string controls with errors can in general contain an invalid value (compared to other types of controls
which are edited by special editors and which cannot contain arbitrary data).

7.4. Data model
The DataModel class encapsulates a data adapter instance to allow uniform access to its data. It also
adds the undo and redo functionality for all operations over the underlying data adapter. The another
important role of the model is to evaluate and validate the stored data and perform the format conversion.

7.4.1. Overview
The data model implements the common Qt interface QAbstractItemModel and allows access to the
data stored in the underlying DataAdapter. The model maps the list of data records represented by
the data adapter to the table of model values. However, the order of the model columns corresponds
to the order of controls in the given AppInputControlContainer rather than to the order of the
adapter columns. The underlying data adapter can be changed using the setAdapter and the target
application input container can be changed using setAppContainer.

The model supports undo and redo using QUndoCommand mechanism. It defines an undo command for
each modification of the data. The methods for changing data are then implemented in three steps. First
the public method is called. It will create the appropriate command object and push it onto the given
QUndoStack. The command object then calls the internal implementation of the action with the stored
arguments in its redo and undo methods.

7.4.2. Data conversion
Filler allows to store data in one format and edit it in another format. This is done by converting the
data from one format to another upon request to the data model. The format of the values is part of the
InputControlContainer definition (both the data storage and the form used for editing are defined
by an input container). The data of the model is stored in the format defined by the input container of
the associated data adapter. The data than can be accessed either in the format of the application form
using the role Qt::EditRole and the original data in the data adapter format can be accessed using
the user role DataModel::UnconvertedRole.

Converted values are used for editing the data in the form defined by the given AppInputControl-
Container. For converting the values the helper class InputConvertorHolder is used. It receives
the input container corresponding to the form used for editing and the input container corresponding to
the underlying data adapter an performs conversion between these two formats.

7.4.3. Data validation and evaluation
The model also ensures the evaluation of the stored data (which means also their validation). There
are two types of evaluation in the model. The first type is direct evaluation of specified model rows.

Filler

39

The second type is the evaluation on background in the dedicated thread. For each type of evaluation
there is a dedicated data evaluator. For the direct evaluation the ProgramEvaluatorAdaptor class
is used. For the evaluation on background the DataValidator class is used. Both these classes are
adapters over the DialogEvaluator class from the shared Lib module (see Section 2.3.2, “Program
evaluation”).

The validation results from both evaluators are stored in the DataFlagMap instance which maintains
the enabled and valid flags for each value of the model. The flags are than accessed when one
of the views displays some data (compared to the computed values which are displayed only by the
form view). In case of the table view the order of requests is not predictable so, to achieve maximum
performance, all the computed flags have to be stored in memory using the flag map.

Direct data evaluation and event handling
The direct data evaluator is used to evaluate a newly filled data. It requires the input values to be in the
format specified in the current AppInputControlContainer. Therefore the input data for evaluation
(which are read in format specified by the datastore input container) have to be converted to the required
format using the InputConvertorHolder class.

Other objects can register themselves to the model to receive notifications from the direct evalua-
tor. These objects have to provide their event handler which implements the interface ModelPro-
gramEventHandler. The object is registered by using the method registerEventHandler and
unregistered by calling removeEventHandler.

The direct evaluator uses the DataModel::DataModelEventHandler instance as its event handler.
This event handler provides the evaluator with the input data which are converted using the given In-
putConvertorHolder. It also stores the results of the validation in the data flag map. This event han-
dler also forwards all appropriate method calls to the registered model program event handlers.

The model itself registers a model program event handlers. It is implemented by the class SetVal-
uesEventHandler and allows user to get directly the available values for an enumerable field (eg.
combo box or list widget). These values can be computed using getValues method of the handler
which invokes the evaluator and caches the data for the specified field. This is used while editing the
data via table view. The available values for an enumerable field can be accessed using the user role
DataModel::AvailableValues.

Background evaluation and event handling
The background data evaluation is used to validate the larger amounts of data while allowing the user
to interact with the program. This evaluation requires the data format specified in the input container of
the given data adapter. Since the data is stored in the required format, no conversions are needed.

The background evaluator runs in a separated thread and uses the
DataModel::DataValidatorEventHandler instance as its event handler. The event handler
tracks only changes of validity and availability of the evaluated items and stores the results into the given
DataFlagMap. The access to the flag map is synchronized.

To ease the manipulation with the evaluator thread, the class DataValidator is used. The rowVal-
idated signal of the data validator is connected to the model which emits the dataChanged signal.

7.4.4. Copy and paste
The model allows to copy and paste its data. This is implemented using the Qt drag and drop mechanism.
The selected data are encoded into a QDrag instance and then dropped on the selected position. The
row indexes of the dragged model items are encoded as an offset of an encoded row from the topmost
encoded row. The columns are stored as absolute values. This is implemented in the mimeData method.
The model supports two ways of dropping data.

The first option is to overwrite the existing data in the corresponding model cells. The row indexes are
computed as the index of target row plus the encoded offsets of the items. The column indexes remain

Filler

40

the same as encoded because each column has a specific meaning and there is no use of copying data
between columns. This option is implemented in the dropMimeData method.

The second option is to drop the data into newly created rows. The row indexes of the new rows are
computed as the target row plus the sequence number of the encoded data row. The column indexes
also remain the same as in previous case. This behavior is implemented in the dropMimeDataIn-
NewRows method.

7.5. Data view classes
Since Filler is based on the Qt model/view framework, it also has to provide ways to display and edit
the data. There are two ways to edit data. One way is to use the central table view, which uses the
TableDelegate delegate class. The second way is to use the custom FormView view based on the
FormHolder class.

7.5.1. Form view
The FormView class is implementation of the QAbstractItemView interface using the FormHolder
class. This view (unlike in other standard views) can display and edit only one row of model data at
once. The row is edited in the form represented by the form holder instance. Simply put, the form view
adds the model/view functionality to the FormHolder class. The current row can be changed using the
setIndex method.

The form view tracks changes of the model data and fills the changed data into the form holder. It also
tracks the key events of the form holder's widgets. The view checks whether the specified shortcut for
moving to the next column or row was pressed and if so than it moves focus to the next field or skips
to the next row.

For handling the evaluation events from the model the view offers an implementation of the Model-
ProgramEventHandler interface called FormViewProgramEventHandler. This handler basically
forwards all calls to the appropriate methods of the form holder.

7.5.2. Table delegate
For editing the data in the table view there is an item delegate TableDelegate class which is respon-
sible for creating appropriate editors according to the target format of the data. The target type of the field
is available by DataModel::ControlType user role. For editing the enumerable fields the available
values are retrieved from the model using the DataModel::AvailableValues role. The textual fields
are edited by a line edit and stored in the format of the datastore (ie. the format of the data adapter).
Other types of fields are edited in the corresponding editor widget and their data are stored in format of
the form (ie. the format of the current application input container).

41

Chapter 8. Final notes
In this chapter we want to compare Form Tools to existing software, describe the process of the devel-
opment run and finally we want to show our future plans.

8.1. Comparison to other tools
All the tools we know about are missing some of the functionality provided by Form Tools. If we take
functions of Form Tools one by one there is no other software which supports creation of digital form
based on the paper original. In the other tool you can draw a form, but they do not help you in any way.
Form Tools on the other hand enables you to create the form directly from the scanned picture and
you do not have to measure every area in the form to obtain an acceptable result. This is done for you
automatically or almost automatically.

Also the possibility of writing your own functionality is quite unique. There are of course some other
programs supporting this (PerfectForms1), however system developed by us is better in many ways.
The first advantage is that our programming language is JavaScript which is well known and also well
documented. We also find better if you write the code than draw it. But it depends on the users. We
want to point out that we use declarative style for the user programs. This saves you hours of coding.
You do not have to write reaction on any change in your form, all values are automatically recalculated
according to their program when necessary. This is the main difference to other tools. Speaking about
the dynamic behavior of the form controls, there is a great thing in Form Tools called Script debugger,
where you can see and edit programs of all the controls along with a live preview of a form, which you
can fill in, test your code, modify the code and test it again and again.

The other important difference to other tools is that we support printing to the preprinted paper forms.
Again there are some other programs (FORMstudio2) but they only provide a database of prepared
forms and you cannot create your own. In addition, in Form Tools you can provide your own datasource
and perform batch printing which can be very useful for companies, where you typically collect data for
a longer period and when you are finished you can print them.

Quite unusual but useful thing is that we provide DLL with API for displaying and printing the forms
created by our application. Thus you can use it in your own application.

Finally, other tools commonly support export to HTML format but we can also export a PHP script or
a project file for our executable application (Filler). Filler is also capable of managing and printing the
collected data. Our data format is open, thus you can easily incorporate the exported PHP scripts into
your web pages and add dynamic forms to them very easily, the collected data can be saved to a CSV
or to a database.

8.2. Development process
The Figure 8.1, “Number of lines during the development” shows how much time we spent just thinking
about the application architecture, its typical usage and potential users. It also shows that the develop-
ment speed was increasing. The first reason for that is that we were not so familiar with the Qt library.
The second reason is, that there were many dependencies among the modules in the beginning. So
one had to wait until another member of the team finished some important part and vice versa. When
the basic functionality was implemented, each developer could start working almost independently on
the others, so the development speed has increased. Unfortunately there were some moments when
some parts needed refactoring, because new requirements had to be solved. The big part of the project
also consists of comments in the source codes and the documentation which were both developed in
the last month which lead to the rapid increase in the number of lines.

1 http://www.perfectforms.com/
2 http://www.formstudio.cz/

http://www.perfectforms.com/
http://www.formstudio.cz/

Final notes

42

Figure 8.1. Number of lines during the development

8.3. Development distribution
Very important decision was how the work on the project should be distributed among the members.
The distribution which was proposed in the specification was quite good and no big changes were done.
On the other side we underestimated the complexity of some parts, for example the Lib module is much
more complex than we thought. Also the Editor provides more features than we planned.

Although the precise borders do not exist, tha overall distribution of work looks like this:

Jan Bulánek Whole OCR module including its GUI and tools for image manipu-
lation in the GuiCommon module, electronic form designer and pa-
per layout to electronic layout convertor. Doxygen comments, both
the user and the programmer documentation of the OCR and form
designers.

Zbyněk Falt Almost everything in the Lib module — classes for manipulation with
form document, program manipulation (the business code of script
debugger), evaluation and data conversion, printing the document
to the scene, scanner support, exporting to the PHP and HTML and
the pattern designer widget in the Editor. Doxygen comments, the
manual in the user documentation and the whole chapter about Lib
module in the programmer documentation.

Lukáš Ježek The major parts of the Editor, including the base classes for all mod-
els, graphics view and items for the paper design, the javascript ed-
itor and overall functionality. Lukáš also developed the major part of
the GuiCommon module including the preview dialog, print dialog,
and a little pieces of the Lib module, like global application settings.
Doxygen comments, the overall structure of the user documentation,
the tutorial and advanced topics, some minor paragraphs in the pro-
grammer documentation.

Jaroslav Keznikl The Filler application and things related to the electronic form design
in Editor application — input designer support along with CSV and
DB storage designers, additional works on Editor such as reporting
of document errors, the script debugger allowing to fill in a form in
Editor etc. Doxygen comments, the structure and the major part of
the contents of the programmer documentation describing the Editor,
Filler and the GuiCommon module .

Final notes

43

8.4. Remarks to the chosen solutions
8.4.1. Development tools
The most important decision which was done in the very beginning was the choice of the programming
language. We chose C++ because we all were familiar with this language and we expected some per-
formance issues in the image processing. From this point of view it was a great choice since all the parts
of our application are quite fast. The GUI things are implemented using the Qt library. It turned out that
this library contains a lot of great stuff which saved us a lot of work. Also its concept of SIGNALS/SLOTS
is widely used in the entire application and we appreciated it. And although we primarily developed this
application for Windows, it can be run on Linux (but it is not tested so well). Finally we are developing
in Microsoft Visual Studio using Git as a repository.

8.4.2. Architecture decisions
All major decisions were commented in the comparison to other tools and we think that this is the best
critical ranking. There are of course some things we want to improve in the future, but after nine months
we developed a tool comparable or even better than some of the professional tools. Thus we think that
all of our major decisions were good.

8.5. Future work
We plan to work on the project in the future and we know that the we need to improve the data man-
agement in Form Filler a lot. We also want to add some features to the Input Layout Designer, static
objects being the most crucial one. Further we want to export to more form formats (e.g. Excel sheets or
Fillable PDF) and support more storage formats (e.g. more common databases). The last thing is a little
bit connected to the business model we plan — we want to divide Form Tools into more applications
each aiming at smaller groups of possible customers.

44

Chapter 9. Contacts
More information about the Form Tools project can be found at http://formtools.jezci.net/. If you have
any doubts or suggestions about the functionality of our programs, do not hesitate and send us an e-
mail to formtools@jezci.net.

http://formtools.jezci.net/

45

Used software components
[QtLib] Copyright © 2008 ― 2010 Nokia Corporation and/or its subsidiaries. Qt — A cross-platform

application and UI framework. http://qt.nokia.com/ .

[TWAIN] Copyright © 1992 ― 2010 TWAIN Working Group. TWAIN — Standard for image acquisition
devices. http://www.twain.org/ .

[SANE] Scanner Access Now Easy. http://www.sane-project.org/ .

